Nature's arsenal unleashed: Senegalia modesta derived thymol halts cancer progression by suppressing proangiogenic genes.

IF 1.9 3区 化学 Q3 CHEMISTRY, APPLIED
Komal Khalid, Mehr Un Nissa Bashir, Muhammad Usman Rashid, Naila Malkani
{"title":"Nature's arsenal unleashed: <i>Senegalia modesta</i> derived thymol halts cancer progression by suppressing proangiogenic genes.","authors":"Komal Khalid, Mehr Un Nissa Bashir, Muhammad Usman Rashid, Naila Malkani","doi":"10.1080/14786419.2024.2446708","DOIUrl":null,"url":null,"abstract":"<p><p>Inhibiting angiogenesis with plant-derived bioactive compounds can inhibit tumour progression. Antiangiogenic potential of <i>Senegalia modesta</i> was analysed by preparing and analysing ethanolic extracts of <i>S.modesta</i> by GC-MS and HPLC to identify bioactive components. In-vivo blood vessel formation assays in mice and chorioallantoic membrane assays (CAM) in eggs were employed to assess the antiangiogenic effects. qPCR was performed to elucidate mRNA expression of proangiogenic genes in MDA-MB-231 cells after exposure to <i>S.modesta</i> and thymol. Molecular docking analysis highlighted the interaction of thymol with VEGF receptors. <i>S.modesta</i> treatment significantly delayed wound healing in mice compared to control group. GC-MS and HPLC analyses thymol as a bioactive compound in <i>S.modesta</i> extract. CAM assay indicated reduced angiogenesis in thymol-treated groups, further confirmed by downregulation of proangiogenic genes. Molecular docking of thymol with VEGFR1/VEGFR2 revealed strong binding affinity, suggesting thymol-mediated receptor blocking. Thymol exhibits antiangiogenic potential and may serve as a promising therapeutic agent against cancer.</p>","PeriodicalId":18990,"journal":{"name":"Natural Product Research","volume":" ","pages":"1-8"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Product Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/14786419.2024.2446708","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Inhibiting angiogenesis with plant-derived bioactive compounds can inhibit tumour progression. Antiangiogenic potential of Senegalia modesta was analysed by preparing and analysing ethanolic extracts of S.modesta by GC-MS and HPLC to identify bioactive components. In-vivo blood vessel formation assays in mice and chorioallantoic membrane assays (CAM) in eggs were employed to assess the antiangiogenic effects. qPCR was performed to elucidate mRNA expression of proangiogenic genes in MDA-MB-231 cells after exposure to S.modesta and thymol. Molecular docking analysis highlighted the interaction of thymol with VEGF receptors. S.modesta treatment significantly delayed wound healing in mice compared to control group. GC-MS and HPLC analyses thymol as a bioactive compound in S.modesta extract. CAM assay indicated reduced angiogenesis in thymol-treated groups, further confirmed by downregulation of proangiogenic genes. Molecular docking of thymol with VEGFR1/VEGFR2 revealed strong binding affinity, suggesting thymol-mediated receptor blocking. Thymol exhibits antiangiogenic potential and may serve as a promising therapeutic agent against cancer.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Natural Product Research
Natural Product Research 化学-医药化学
CiteScore
5.10
自引率
9.10%
发文量
605
审稿时长
2.1 months
期刊介绍: The aim of Natural Product Research is to publish important contributions in the field of natural product chemistry. The journal covers all aspects of research in the chemistry and biochemistry of naturally occurring compounds. The communications include coverage of work on natural substances of land and sea and of plants, microbes and animals. Discussions of structure elucidation, synthesis and experimental biosynthesis of natural products as well as developments of methods in these areas are welcomed in the journal. Finally, research papers in fields on the chemistry-biology boundary, eg. fermentation chemistry, plant tissue culture investigations etc., are accepted into the journal. Natural Product Research issues will be subtitled either ""Part A - Synthesis and Structure"" or ""Part B - Bioactive Natural Products"". for details on this , see the forthcoming articles section. All manuscript submissions are subject to initial appraisal by the Editor, and, if found suitable for further consideration, to peer review by independent, anonymous expert referees. All peer review is single blind and submission is online via ScholarOne Manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信