Atchuth Naveen Chilaparasetti, Andy Thai, Pan Gao, Xiangmin Xu, M Gopi
{"title":"RegBoost: Enhancing mouse brain image registration using geometric priors and Laplacian interpolation.","authors":"Atchuth Naveen Chilaparasetti, Andy Thai, Pan Gao, Xiangmin Xu, M Gopi","doi":"10.1016/j.neuroimage.2024.120981","DOIUrl":null,"url":null,"abstract":"<p><p>We show in this work that incorporating geometric features and geometry processing algorithms for mouse brain image registration broadens the applicability of registration algorithms and improves the registration accuracy of existing methods. We introduce the preprocessing and postprocessing steps in our proposed framework as RegBoost. We develop a method to align the axis of 3D image stacks by detecting the central planes that pass symmetrically through the image volumes. We then find geometric contours by defining external and internal structures to facilitate image correspondences. We establish Dirichlet boundary conditions at these correspondences and find the displacement map throughout the volume using Laplacian interpolation. We discuss the challenges in our standalone framework and demonstrate how our new approaches can improve the results of existing image registration methods. We expect our new approach and algorithms will have critical applications in brain mapping projects.</p>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":" ","pages":"120981"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroimage.2024.120981","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
We show in this work that incorporating geometric features and geometry processing algorithms for mouse brain image registration broadens the applicability of registration algorithms and improves the registration accuracy of existing methods. We introduce the preprocessing and postprocessing steps in our proposed framework as RegBoost. We develop a method to align the axis of 3D image stacks by detecting the central planes that pass symmetrically through the image volumes. We then find geometric contours by defining external and internal structures to facilitate image correspondences. We establish Dirichlet boundary conditions at these correspondences and find the displacement map throughout the volume using Laplacian interpolation. We discuss the challenges in our standalone framework and demonstrate how our new approaches can improve the results of existing image registration methods. We expect our new approach and algorithms will have critical applications in brain mapping projects.
期刊介绍:
NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.