Jun Fan, Jumian Feng, Lin Yang, Qin Zhang, Huaqiu Li
{"title":"Remimazolam alleviates sleep deprivation induced anxiety-like behaviors via regulating the STING pathway.","authors":"Jun Fan, Jumian Feng, Lin Yang, Qin Zhang, Huaqiu Li","doi":"10.1016/j.neulet.2024.138095","DOIUrl":null,"url":null,"abstract":"<p><p>Sleep loss becomes a major problem in modern life and increases the incidence of anxiety disorders. Benzodiazepines are the most commonly used anxiolytic medications. Remimazolam is an ultra-short-acting benzodiazepine, which has been shown to reduce the preoperative anxiety levels in patients. However, the effects on anxiety-like behaviors caused by chronic sleep deprivation (CSD) and the underlying molecular mechanisms remain unclear. Here, we found that administration of remimazolam can effectively alleviate anxiety-like behaviors induced by CSD. Furthermore, remimazolam can significantly preserve the sleep deprivation-induced deficits in neuronal calcium activity in CA1 of the hippocampus. In addition, stimulator of interferon genes (STING) was activated in CA1 after CSD, while remimazolam was sufficient to block the activation of the STING pathway. Further study showed that inhibiting the activation of STING also effectively alleviates the anxiety symptoms induced by CSD. Overall, our research offers new insight and a promising therapeutic agent for the anxiety disorders caused by sleep deprivation.</p>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":" ","pages":"138095"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neulet.2024.138095","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Sleep loss becomes a major problem in modern life and increases the incidence of anxiety disorders. Benzodiazepines are the most commonly used anxiolytic medications. Remimazolam is an ultra-short-acting benzodiazepine, which has been shown to reduce the preoperative anxiety levels in patients. However, the effects on anxiety-like behaviors caused by chronic sleep deprivation (CSD) and the underlying molecular mechanisms remain unclear. Here, we found that administration of remimazolam can effectively alleviate anxiety-like behaviors induced by CSD. Furthermore, remimazolam can significantly preserve the sleep deprivation-induced deficits in neuronal calcium activity in CA1 of the hippocampus. In addition, stimulator of interferon genes (STING) was activated in CA1 after CSD, while remimazolam was sufficient to block the activation of the STING pathway. Further study showed that inhibiting the activation of STING also effectively alleviates the anxiety symptoms induced by CSD. Overall, our research offers new insight and a promising therapeutic agent for the anxiety disorders caused by sleep deprivation.
期刊介绍:
Neuroscience Letters is devoted to the rapid publication of short, high-quality papers of interest to the broad community of neuroscientists. Only papers which will make a significant addition to the literature in the field will be published. Papers in all areas of neuroscience - molecular, cellular, developmental, systems, behavioral and cognitive, as well as computational - will be considered for publication. Submission of laboratory investigations that shed light on disease mechanisms is encouraged. Special Issues, edited by Guest Editors to cover new and rapidly-moving areas, will include invited mini-reviews. Occasional mini-reviews in especially timely areas will be considered for publication, without invitation, outside of Special Issues; these un-solicited mini-reviews can be submitted without invitation but must be of very high quality. Clinical studies will also be published if they provide new information about organization or actions of the nervous system, or provide new insights into the neurobiology of disease. NSL does not publish case reports.