Development of Highly Stretchable Ag-MWCNT Composite for Screen-Printed Textile Electronics with Improved Mechanical and Electrical Properties.

IF 2.4 Q2 NANOSCIENCE & NANOTECHNOLOGY
Nanotechnology, Science and Applications Pub Date : 2024-12-21 eCollection Date: 2024-01-01 DOI:10.2147/NSA.S493579
Daniel Janczak, Katarzyna Wójkowska, Tomasz Raczyński, Marcin Zych, Sandra Lepak-Kuc, Jerzy Szałapak, Mikko Nelo, Aleksandra Kądziela, Grzegorz Wróblewski, Heli Jantunen, Małgorzata Jakubowska
{"title":"Development of Highly Stretchable Ag-MWCNT Composite for Screen-Printed Textile Electronics with Improved Mechanical and Electrical Properties.","authors":"Daniel Janczak, Katarzyna Wójkowska, Tomasz Raczyński, Marcin Zych, Sandra Lepak-Kuc, Jerzy Szałapak, Mikko Nelo, Aleksandra Kądziela, Grzegorz Wróblewski, Heli Jantunen, Małgorzata Jakubowska","doi":"10.2147/NSA.S493579","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The rapid growth of flexible and wearable electronics has created a need for materials that offer both mechanical durability and high conductivity. Textile electronics, which integrate electronic pathways into fabrics, are pivotal in this field but face challenges in maintaining stable electrical performance under mechanical strain. This study develops highly stretchable silver multi-walled carbon nanotube (Ag-MWCNT) composites, tailored for screen printing and heat-transfer methods, to address these challenges.</p><p><strong>Methods: </strong>Silver flakes dispersed in a thermoplastic polyurethane (TPU) matrix formed the base composite, which was initially evaluated under tensile and cyclic stretching conditions. Resistance drift observed in these tests prompted the incorporation of multi-walled carbon nanotubes (MWCNTs). Leveraging their high aspect ratio and conductivity, MWCNTs were homogenized into the composite at varying concentrations. The resulting Ag-MWCNT composites were assessed through cyclic stretching and thermal shock tests to evaluate electrical and mechanical performance.</p><p><strong>Results: </strong>Incorporating MWCNTs improved composite performance, reducing resistance change amplitude by 40% and stabilizing resistance within 2-8 Ohms under mechanical stress. These materials demonstrated superior electrical stability and durability, maintaining consistent performance over extended use compared to Ag/TPU alone.</p><p><strong>Discussion: </strong>This study highlights the critical role of MWCNTs in enhancing the reliability of conductive composites for textile electronics. By addressing resistance drift and stabilizing electrical properties, these advancements enable more robust and long-lasting wearable technologies. The demonstrated feasibility of combining screen-printing and heat-transfer techniques provides a scalable approach for manufacturing flexible electronics, paving the way for further innovation in industrial applications.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"17 ","pages":"289-302"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11669482/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology, Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/NSA.S493579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The rapid growth of flexible and wearable electronics has created a need for materials that offer both mechanical durability and high conductivity. Textile electronics, which integrate electronic pathways into fabrics, are pivotal in this field but face challenges in maintaining stable electrical performance under mechanical strain. This study develops highly stretchable silver multi-walled carbon nanotube (Ag-MWCNT) composites, tailored for screen printing and heat-transfer methods, to address these challenges.

Methods: Silver flakes dispersed in a thermoplastic polyurethane (TPU) matrix formed the base composite, which was initially evaluated under tensile and cyclic stretching conditions. Resistance drift observed in these tests prompted the incorporation of multi-walled carbon nanotubes (MWCNTs). Leveraging their high aspect ratio and conductivity, MWCNTs were homogenized into the composite at varying concentrations. The resulting Ag-MWCNT composites were assessed through cyclic stretching and thermal shock tests to evaluate electrical and mechanical performance.

Results: Incorporating MWCNTs improved composite performance, reducing resistance change amplitude by 40% and stabilizing resistance within 2-8 Ohms under mechanical stress. These materials demonstrated superior electrical stability and durability, maintaining consistent performance over extended use compared to Ag/TPU alone.

Discussion: This study highlights the critical role of MWCNTs in enhancing the reliability of conductive composites for textile electronics. By addressing resistance drift and stabilizing electrical properties, these advancements enable more robust and long-lasting wearable technologies. The demonstrated feasibility of combining screen-printing and heat-transfer techniques provides a scalable approach for manufacturing flexible electronics, paving the way for further innovation in industrial applications.

具有高拉伸性能的Ag-MWCNT丝网印刷纺织电子复合材料的研制。
导读:柔性和可穿戴电子产品的快速增长创造了对既能提供机械耐久性又能提供高导电性的材料的需求。纺织电子将电子路径集成到织物中,在这一领域至关重要,但在机械应变下保持稳定的电气性能面临挑战。本研究开发了高度可拉伸的银多壁碳纳米管(Ag-MWCNT)复合材料,为丝网印刷和热传导方法量身定制,以解决这些挑战。方法:将银片分散在热塑性聚氨酯(TPU)基体中形成基础复合材料,并在拉伸和循环拉伸条件下对其进行初步评价。在这些试验中观察到的阻力漂移促使多壁碳纳米管(MWCNTs)的掺入。利用其高长宽比和导电性,MWCNTs以不同的浓度均匀化到复合材料中。通过循环拉伸和热冲击测试来评估所得Ag-MWCNT复合材料的电气和机械性能。结果:加入MWCNTs提高了复合材料的性能,使机械应力下的电阻变化幅度降低了40%,并将电阻稳定在2-8欧姆。与单独使用Ag/TPU相比,这些材料表现出优异的电气稳定性和耐用性,在长时间使用中保持一致的性能。讨论:本研究强调了MWCNTs在提高纺织电子导电复合材料可靠性方面的关键作用。通过解决电阻漂移和稳定电气性能,这些进步使可穿戴技术更加坚固耐用。丝网印刷和热转印技术相结合的可行性为制造柔性电子产品提供了一种可扩展的方法,为工业应用的进一步创新铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanotechnology, Science and Applications
Nanotechnology, Science and Applications NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
11.70
自引率
0.00%
发文量
3
审稿时长
16 weeks
期刊介绍: Nanotechnology, Science and Applications is an international, peer-reviewed, Open Access journal that focuses on the science of nanotechnology in a wide range of industrial and academic applications. The journal is characterized by the rapid reporting of reviews, original research, and application studies across all sectors, including engineering, optics, bio-medicine, cosmetics, textiles, resource sustainability and science. Applied research into nano-materials, particles, nano-structures and fabrication, diagnostics and analytics, drug delivery and toxicology constitute the primary direction of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信