[Electroacupuncture improves learning and memory function and promotes hippocampal synaptic regeneration in rats with cerebral ischemia-reperfusion injury].
{"title":"[Electroacupuncture improves learning and memory function and promotes hippocampal synaptic regeneration in rats with cerebral ischemia-reperfusion injury].","authors":"Ruhui Lin, Jinyan Xia, Xiaohan Ma, Zuanfang Li","doi":"10.12122/j.issn.1673-4254.2024.12.07","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To explore the neuroprotective mechanism of electroacupuncture at the acupoints <i>Baihui</i> and <i>Shenting</i> in rats with cerebral ischemia-reperfusion (IR) injury.</p><p><strong>Methods: </strong>Forty-eight male SD rats were equally randomized into sham operation group, cerebral IR model group, acupoint electroacupuncture group and non-acupoint acupuncture group. In the latter 3 groups, cerebral focal ischemic injury was induced using the Longa method; in the two electroacupuncture groups, electroacupuncture was performed either at the acupoints <i>Baihui</i> and <i>Shenting</i> or at non-acupoint sites for 7 days. The changes in neurological deficit scores, cerebral infarction volume, learning and memory function, pathologies in hippocampal CA1 area, neuronal and synaptic ultrastructures, and synaptic density of the rats were observed, and serum GABA level and mRNA and protein expressions of GABA<sub>A</sub>R α1, CaMK II, SYN1 and PSD-95 in the hippocampal tissue were detected.</p><p><strong>Results: </strong>Compared with those in cerebral IR model group, the rats receiving electroacupuncture at the acupoints, but not those with electroacupuncture at the non-acupoints, showed significantly decreased neurological deficit scores and cerebral infarction volume with shortened escape latency and increased platform crossings. Electroacupuncture at the acupoints significantly increased neuronal cell number, decreased the width of the synaptic gaps and increased density of synaptic bodies in the ischemic hippocampal CA1 area, resulting also in increased serum GABA levels and hippocampal expressions of GABA<sub>A</sub>Rα1, SYN1 and PSD-95 and lowered expression level of CaMK II.</p><p><strong>Conclusions: </strong>Electroacupuncture at <i>Baihui</i> and <i>Shenting</i> improves learning and memory function of rats with cerebral IR injury possibly through a mechanism that promotes synaptic regeneration, upregulates hippocampal expressions of GABAAR α 1, SYN1 and PSD-95 and downregulates the expression of CaMK II.</p>","PeriodicalId":18962,"journal":{"name":"南方医科大学学报杂志","volume":"44 12","pages":"2317-2326"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683340/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"南方医科大学学报杂志","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12122/j.issn.1673-4254.2024.12.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: To explore the neuroprotective mechanism of electroacupuncture at the acupoints Baihui and Shenting in rats with cerebral ischemia-reperfusion (IR) injury.
Methods: Forty-eight male SD rats were equally randomized into sham operation group, cerebral IR model group, acupoint electroacupuncture group and non-acupoint acupuncture group. In the latter 3 groups, cerebral focal ischemic injury was induced using the Longa method; in the two electroacupuncture groups, electroacupuncture was performed either at the acupoints Baihui and Shenting or at non-acupoint sites for 7 days. The changes in neurological deficit scores, cerebral infarction volume, learning and memory function, pathologies in hippocampal CA1 area, neuronal and synaptic ultrastructures, and synaptic density of the rats were observed, and serum GABA level and mRNA and protein expressions of GABAAR α1, CaMK II, SYN1 and PSD-95 in the hippocampal tissue were detected.
Results: Compared with those in cerebral IR model group, the rats receiving electroacupuncture at the acupoints, but not those with electroacupuncture at the non-acupoints, showed significantly decreased neurological deficit scores and cerebral infarction volume with shortened escape latency and increased platform crossings. Electroacupuncture at the acupoints significantly increased neuronal cell number, decreased the width of the synaptic gaps and increased density of synaptic bodies in the ischemic hippocampal CA1 area, resulting also in increased serum GABA levels and hippocampal expressions of GABAARα1, SYN1 and PSD-95 and lowered expression level of CaMK II.
Conclusions: Electroacupuncture at Baihui and Shenting improves learning and memory function of rats with cerebral IR injury possibly through a mechanism that promotes synaptic regeneration, upregulates hippocampal expressions of GABAAR α 1, SYN1 and PSD-95 and downregulates the expression of CaMK II.