Banxin Luo , Xiaofeng Ding , Yue Hu , Meng Tian , Junchao Wu , Huan Shi , Xizi Lu , Xuefeng Xia , Wenxian Guan , Wencheng Jiang
{"title":"Shikonin hastens diabetic wound healing by inhibiting M1 macrophage polarisation through the MAPK signaling pathway","authors":"Banxin Luo , Xiaofeng Ding , Yue Hu , Meng Tian , Junchao Wu , Huan Shi , Xizi Lu , Xuefeng Xia , Wenxian Guan , Wencheng Jiang","doi":"10.1016/j.molimm.2024.12.002","DOIUrl":null,"url":null,"abstract":"<div><div>Diabetes is an endocrine disorder characterized by abnormally elevated blood glucose levels. Diabetic patients often exhibit impaired wound healing capabilities, particularly in the lower limbs, which is one of the numerous complications of diabetes. This is a significant factor leading to recurrent inflammation, disability, and even amputation. The primary objective of this study is to explore the mechanism by which shikonin accelerates diabetic wound healing by modulating macrophage phenotypes, particularly its role in the MAPK signaling pathway. To this end, we used a diabetic rat model and analyzed the effects of shikonin on the wound healing process and macrophage polarization in both <em>in vivo</em> and <em>in vitro</em> experiments. Additionally, we used immunofluorescence staining and Western blot techniques to detect the expression levels of macrophage polarization markers and proteins related to the MAPK signaling pathway. The results verify that shikonin significantly accelerated wound healing in diabetic rats and inhibited the polarization of M1 macrophages, reducing the expression of pro-inflammatory factors, while promoting the polarization of M2 macrophages, increasing the expression of anti-inflammatory factors. This process was accompanied by the regulation of the MAPK signaling pathway, indicating that shikonin accelerates diabetic wound healing by regulating the MAPK signaling pathway to inhibit the inflammatory phenotype of macrophages, showing significant clinical application prospects.</div></div>","PeriodicalId":18938,"journal":{"name":"Molecular immunology","volume":"177 ","pages":"Pages 73-84"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0161589024002141","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetes is an endocrine disorder characterized by abnormally elevated blood glucose levels. Diabetic patients often exhibit impaired wound healing capabilities, particularly in the lower limbs, which is one of the numerous complications of diabetes. This is a significant factor leading to recurrent inflammation, disability, and even amputation. The primary objective of this study is to explore the mechanism by which shikonin accelerates diabetic wound healing by modulating macrophage phenotypes, particularly its role in the MAPK signaling pathway. To this end, we used a diabetic rat model and analyzed the effects of shikonin on the wound healing process and macrophage polarization in both in vivo and in vitro experiments. Additionally, we used immunofluorescence staining and Western blot techniques to detect the expression levels of macrophage polarization markers and proteins related to the MAPK signaling pathway. The results verify that shikonin significantly accelerated wound healing in diabetic rats and inhibited the polarization of M1 macrophages, reducing the expression of pro-inflammatory factors, while promoting the polarization of M2 macrophages, increasing the expression of anti-inflammatory factors. This process was accompanied by the regulation of the MAPK signaling pathway, indicating that shikonin accelerates diabetic wound healing by regulating the MAPK signaling pathway to inhibit the inflammatory phenotype of macrophages, showing significant clinical application prospects.
期刊介绍:
Molecular Immunology publishes original articles, reviews and commentaries on all areas of immunology, with a particular focus on description of cellular, biochemical or genetic mechanisms underlying immunological phenomena. Studies on all model organisms, from invertebrates to humans, are suitable. Examples include, but are not restricted to:
Infection, autoimmunity, transplantation, immunodeficiencies, inflammation and tumor immunology
Mechanisms of induction, regulation and termination of innate and adaptive immunity
Intercellular communication, cooperation and regulation
Intracellular mechanisms of immunity (endocytosis, protein trafficking, pathogen recognition, antigen presentation, etc)
Mechanisms of action of the cells and molecules of the immune system
Structural analysis
Development of the immune system
Comparative immunology and evolution of the immune system
"Omics" studies and bioinformatics
Vaccines, biotechnology and therapeutic manipulation of the immune system (therapeutic antibodies, cytokines, cellular therapies, etc)
Technical developments.