The Langmuir Monolayer as a Model Membrane System for Studying the Interactions of Poly(Butyl Cyanoacrylate) Nanoparticles with Phospholipids at the Air/Water Interface.

IF 3.3 4区 工程技术 Q2 CHEMISTRY, PHYSICAL
Georgi Yordanov, Ivan Minkov, Konstantin Balashev
{"title":"The Langmuir Monolayer as a Model Membrane System for Studying the Interactions of Poly(Butyl Cyanoacrylate) Nanoparticles with Phospholipids at the Air/Water Interface.","authors":"Georgi Yordanov, Ivan Minkov, Konstantin Balashev","doi":"10.3390/membranes14120254","DOIUrl":null,"url":null,"abstract":"<p><p>Poly(butyl cyanoacrylate) (PBCA) nanoparticles have numerous applications, including drug and gene delivery, molecular imaging, and cancer therapy. To uncover the molecular mechanisms underlying their interactions with cell membranes, we utilized a Langmuir monolayer as a model membrane system. This approach enabled us to investigate the processes of penetration and reorganization of PBCA nanoparticles when deposited in a phospholipid monolayer subphase. Atomic force microscopy (AFM) was employed to visualize Langmuir-Blodgett (LB) films of these nanoparticles. Additionally, we examined the state of a monolayer of Pluronic F68, a stabilizer of PBCA nanoparticles in suspension, by measuring the changes in relative surface area and surface potential over time in the barostatic regime following PBCA suspension spreading. Based on these findings, we propose a molecular mechanism for nanoparticle reorganization at the air-water interface.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 12","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678612/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes14120254","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Poly(butyl cyanoacrylate) (PBCA) nanoparticles have numerous applications, including drug and gene delivery, molecular imaging, and cancer therapy. To uncover the molecular mechanisms underlying their interactions with cell membranes, we utilized a Langmuir monolayer as a model membrane system. This approach enabled us to investigate the processes of penetration and reorganization of PBCA nanoparticles when deposited in a phospholipid monolayer subphase. Atomic force microscopy (AFM) was employed to visualize Langmuir-Blodgett (LB) films of these nanoparticles. Additionally, we examined the state of a monolayer of Pluronic F68, a stabilizer of PBCA nanoparticles in suspension, by measuring the changes in relative surface area and surface potential over time in the barostatic regime following PBCA suspension spreading. Based on these findings, we propose a molecular mechanism for nanoparticle reorganization at the air-water interface.

Langmuir单层膜作为研究聚氰丙烯酸丁酯纳米颗粒与磷脂在空气/水界面上相互作用的模型膜系统。
聚氰基丙烯酸丁酯(PBCA)纳米颗粒有许多应用,包括药物和基因传递、分子成像和癌症治疗。为了揭示它们与细胞膜相互作用的分子机制,我们利用Langmuir单层作为膜系统模型。这种方法使我们能够研究PBCA纳米颗粒沉积在磷脂单层亚相时的渗透和重组过程。利用原子力显微镜(AFM)观察了这些纳米颗粒的Langmuir-Blodgett (LB)膜。此外,通过测量PBCA悬浮液扩散后静压状态下相对表面积和表面电位随时间的变化,研究了Pluronic F68 (PBCA纳米颗粒的稳定剂)单层悬浮液的状态。基于这些发现,我们提出了纳米颗粒在空气-水界面重组的分子机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Membranes
Membranes Chemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍: Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信