{"title":"System Dynamics Modeling of Scale Formation in Membrane Distillation Systems for Seawater and RO Brine Treatment.","authors":"Yonghyun Shin, Jaewuk Koo, Sangho Lee","doi":"10.3390/membranes14120252","DOIUrl":null,"url":null,"abstract":"<p><p>To overcome the limitations of traditional Reverse Osmosis (RO) desalination, Membrane Distillation (MD) has gained attention as an effective solution for improving the treatment of seawater and RO brine. Despite its potential, the formation of inorganic scales, particularly calcium sulfate (CaSO<sub>4</sub>), continues to pose a major challenge. This research aims to explore the scaling mechanisms in MD systems through a combination of experimental analysis and dynamic modeling. Using real seawater and RO brine as feed sources, the scaling behavior was examined under various operational conditions, such as temperature and feed concentration. Optical Coherence Tomography (OCT) was utilized to monitor the real-time development of fouling layers, offering valuable insights into surface crystal formation processes. A System Dynamics Model (SDM) was created based on the experimental data to predict flux decline trends with precision. The model correlated well with experimental observations, highlighting key factors that drive scaling severity. This integrated approach deepens our understanding of scaling dynamics and provides actionable strategies to mitigate fouling in MD systems, thereby enhancing the efficiency and stability of MD desalination operations. Ultimately, this study underscores the potential of combining OCT with system dynamics modeling as a powerful approach for visualizing and validating scaling processes, offering a practical framework for optimizing MD performance and contributing to more sustainable desalination practices.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 12","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677275/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes14120252","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To overcome the limitations of traditional Reverse Osmosis (RO) desalination, Membrane Distillation (MD) has gained attention as an effective solution for improving the treatment of seawater and RO brine. Despite its potential, the formation of inorganic scales, particularly calcium sulfate (CaSO4), continues to pose a major challenge. This research aims to explore the scaling mechanisms in MD systems through a combination of experimental analysis and dynamic modeling. Using real seawater and RO brine as feed sources, the scaling behavior was examined under various operational conditions, such as temperature and feed concentration. Optical Coherence Tomography (OCT) was utilized to monitor the real-time development of fouling layers, offering valuable insights into surface crystal formation processes. A System Dynamics Model (SDM) was created based on the experimental data to predict flux decline trends with precision. The model correlated well with experimental observations, highlighting key factors that drive scaling severity. This integrated approach deepens our understanding of scaling dynamics and provides actionable strategies to mitigate fouling in MD systems, thereby enhancing the efficiency and stability of MD desalination operations. Ultimately, this study underscores the potential of combining OCT with system dynamics modeling as a powerful approach for visualizing and validating scaling processes, offering a practical framework for optimizing MD performance and contributing to more sustainable desalination practices.
MembranesChemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍:
Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.