Fabrício Wilbert, Joana Farias Corte, Felipe Tiago do Nascimento, Vanusca Dalosto Jahno, Marco Antônio Siqueira Rodrigues, Fabrício Celso, Salatiel W da Silva, Andrea Moura Bernardes
{"title":"Cationic/Anionic Poly(p-Phenylene Oxide) Membranes: Preparation and Electrodialysis Performance for Nickel Recovery from Industrial Effluents.","authors":"Fabrício Wilbert, Joana Farias Corte, Felipe Tiago do Nascimento, Vanusca Dalosto Jahno, Marco Antônio Siqueira Rodrigues, Fabrício Celso, Salatiel W da Silva, Andrea Moura Bernardes","doi":"10.3390/membranes14120268","DOIUrl":null,"url":null,"abstract":"<p><p>Electrodialysis (ED) has already been applied to recover nickel in galvanizing processes, allowing nickel recovery and the production of a treated effluent with demineralized water quality. However, the growth in ED use is still limited by the production and commercialization of ion-selective membranes, currently limited to a few large companies. Therefore, this paper presents the development of homogeneous cationic and anionic membranes made from poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) for ED use. Cationic membranes were prepared by the sulfonation reaction of PPO under different experimental conditions (PPO:H<sub>2</sub>SO<sub>4</sub> molar ratio and reaction time). Anionic membranes were prepared by the bromination reaction of PPO, followed by the amination reaction. The membranes were characterized for their chemical and electrochemical properties, including ion exchange capacity, conductivity, thermal stability, and surface morphology. The optimal conditions for cationic membrane sulfonation were achieved with a 1:4.4 PPO:H<sub>2</sub>SO<sub>4</sub> molar ratio, and a reaction time of 0.5 h. For anionic membranes, the best results were obtained with bromination, with a PPO:NBS (N-Bromosuccinimide) molar ratio of 1:0.5, followed by 14 days of amination. Overall, 91.8% chloride, 90.9% sulfate, and 85.5% nickel ion extraction was achieved, highlighting PPO as a promising polymer for the development of anionic and cationic ion-selective membranes for ED.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 12","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678474/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes14120268","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electrodialysis (ED) has already been applied to recover nickel in galvanizing processes, allowing nickel recovery and the production of a treated effluent with demineralized water quality. However, the growth in ED use is still limited by the production and commercialization of ion-selective membranes, currently limited to a few large companies. Therefore, this paper presents the development of homogeneous cationic and anionic membranes made from poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) for ED use. Cationic membranes were prepared by the sulfonation reaction of PPO under different experimental conditions (PPO:H2SO4 molar ratio and reaction time). Anionic membranes were prepared by the bromination reaction of PPO, followed by the amination reaction. The membranes were characterized for their chemical and electrochemical properties, including ion exchange capacity, conductivity, thermal stability, and surface morphology. The optimal conditions for cationic membrane sulfonation were achieved with a 1:4.4 PPO:H2SO4 molar ratio, and a reaction time of 0.5 h. For anionic membranes, the best results were obtained with bromination, with a PPO:NBS (N-Bromosuccinimide) molar ratio of 1:0.5, followed by 14 days of amination. Overall, 91.8% chloride, 90.9% sulfate, and 85.5% nickel ion extraction was achieved, highlighting PPO as a promising polymer for the development of anionic and cationic ion-selective membranes for ED.
MembranesChemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍:
Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.