{"title":"A Study of Theoretical Analysis and Modelling of Microalgal Membrane Photobioreactors for Microalgal Biomass Production and Nutrient Removal.","authors":"Yichen Liao, Pedram Fatehi, Baoqiang Liao","doi":"10.3390/membranes14120245","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a theoretical and mathematical analysis and modelling of the emerging microalgal membrane photobioreactors (M-MPBRs) for wastewater treatment. A set of mathematical models was developed to predict the biological performances of M-MPBRs. The model takes into account the effects of hydraulic retention time (HRT), solid retention time (SRT), and the N/P ratio of influent on the biological performance of M-MPBRs, such as microalgal biomass production and nutrient (N and P) removals. The model was calibrated and validated using experimental data from the literature. This modelling study explained that prolonged SRT could promote biomass production and nutrient removal, while prolonging HRT exhibited a negative effect. Furthermore, biomass production could be improved by augmenting nutrient loading, and nutrient removal would be limited under insufficient conditions. The modelling results demonstrated that the best performance was achieved at HRT = 1 d and SRT = 40 d for typical municipal wastewater with an influent N concentration = 40 mg/L. The modelling results are in good agreement with the experimental results from the literature. The findings suggest that the proposed models can be used as a powerful mathematical tool to optimize these parameters to improve the removal of nutrients (N and P), as well as the productivity of biomass in M-MPBRs. This study provides new insights into the use of mathematical models for the optimal design and operation of the emerging M-MPBRs for sustainable wastewater treatment.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 12","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11676873/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes14120245","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a theoretical and mathematical analysis and modelling of the emerging microalgal membrane photobioreactors (M-MPBRs) for wastewater treatment. A set of mathematical models was developed to predict the biological performances of M-MPBRs. The model takes into account the effects of hydraulic retention time (HRT), solid retention time (SRT), and the N/P ratio of influent on the biological performance of M-MPBRs, such as microalgal biomass production and nutrient (N and P) removals. The model was calibrated and validated using experimental data from the literature. This modelling study explained that prolonged SRT could promote biomass production and nutrient removal, while prolonging HRT exhibited a negative effect. Furthermore, biomass production could be improved by augmenting nutrient loading, and nutrient removal would be limited under insufficient conditions. The modelling results demonstrated that the best performance was achieved at HRT = 1 d and SRT = 40 d for typical municipal wastewater with an influent N concentration = 40 mg/L. The modelling results are in good agreement with the experimental results from the literature. The findings suggest that the proposed models can be used as a powerful mathematical tool to optimize these parameters to improve the removal of nutrients (N and P), as well as the productivity of biomass in M-MPBRs. This study provides new insights into the use of mathematical models for the optimal design and operation of the emerging M-MPBRs for sustainable wastewater treatment.
MembranesChemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍:
Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.