Modulating exosomal communication between macrophages and melanoma cancer cells via cyclodextrin-based nanosponges loaded with doxorubicin.

IF 3.6 3区 医学 Q3 NANOSCIENCE & NANOTECHNOLOGY
Mohammad Mahmoudian, Shokoufeh Alizadeh, Darya Lotfi, Yousef Khazaei Monfared, Mahdi Mahdipour, Francesco Trotta, Parvin Zakeri-Milani, Ziba Islambulchilar
{"title":"Modulating exosomal communication between macrophages and melanoma cancer cells via cyclodextrin-based nanosponges loaded with doxorubicin.","authors":"Mohammad Mahmoudian, Shokoufeh Alizadeh, Darya Lotfi, Yousef Khazaei Monfared, Mahdi Mahdipour, Francesco Trotta, Parvin Zakeri-Milani, Ziba Islambulchilar","doi":"10.1080/17435390.2024.2446553","DOIUrl":null,"url":null,"abstract":"<p><p>The cellular components of the tumor microenvironment (TME) comprise cancer cells and nonmalignant cells including stromal and immune cells. Exosomes are extracellular vesicles secreted by various types of cells that play a crucial role in intercellular communications within TME. The main goal of this study was to elucidate how exosomes of macrophage cells treated with doxorubicin (DOX) and DOX-loaded cyclodextrin-based nanosponges (DOX-CDNSs), affect melanoma cancer cell proliferation. For this aim, the exosomes of the murine macrophage cell line (RAW 264.7) were isolated and characterized after treating the cells with DOX and DOX-CDNSs. The results demonstrated that DOX-CDNSs at a treatment concentration of 1 µg/mL, were nontoxic for macrophages and remarkably toxic against cancer cells. However, DOX was nontoxic for both cell types at the same treatment concentration. DOX and DOX-CDNSs remarkably declined the viability of both cell types at higher concentrations (25 and 50 µg/mL). Intriguingly, the exosomes of DOX-CD-NSs treated macrophages promoted the viability of cancer cells at the treatment concentrations of 1, 20, and 40 µg/mL. While the exosomes of DOX-treated macrophages increased cell viability of cancer cells only at the lowest concentration. In conclusion, this study suggests that utilization of CD-NSs may augment the toxicity of DOX against cancer cells, while it could direct macrophages toward secreting exosomes that favor the growth of cancer cells.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"1-11"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17435390.2024.2446553","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The cellular components of the tumor microenvironment (TME) comprise cancer cells and nonmalignant cells including stromal and immune cells. Exosomes are extracellular vesicles secreted by various types of cells that play a crucial role in intercellular communications within TME. The main goal of this study was to elucidate how exosomes of macrophage cells treated with doxorubicin (DOX) and DOX-loaded cyclodextrin-based nanosponges (DOX-CDNSs), affect melanoma cancer cell proliferation. For this aim, the exosomes of the murine macrophage cell line (RAW 264.7) were isolated and characterized after treating the cells with DOX and DOX-CDNSs. The results demonstrated that DOX-CDNSs at a treatment concentration of 1 µg/mL, were nontoxic for macrophages and remarkably toxic against cancer cells. However, DOX was nontoxic for both cell types at the same treatment concentration. DOX and DOX-CDNSs remarkably declined the viability of both cell types at higher concentrations (25 and 50 µg/mL). Intriguingly, the exosomes of DOX-CD-NSs treated macrophages promoted the viability of cancer cells at the treatment concentrations of 1, 20, and 40 µg/mL. While the exosomes of DOX-treated macrophages increased cell viability of cancer cells only at the lowest concentration. In conclusion, this study suggests that utilization of CD-NSs may augment the toxicity of DOX against cancer cells, while it could direct macrophages toward secreting exosomes that favor the growth of cancer cells.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanotoxicology
Nanotoxicology 医学-毒理学
CiteScore
10.10
自引率
4.00%
发文量
45
审稿时长
3.5 months
期刊介绍: Nanotoxicology invites contributions addressing research relating to the potential for human and environmental exposure, hazard and risk associated with the use and development of nano-structured materials. In this context, the term nano-structured materials has a broad definition, including ‘materials with at least one dimension in the nanometer size range’. These nanomaterials range from nanoparticles and nanomedicines, to nano-surfaces of larger materials and composite materials. The range of nanomaterials in use and under development is extremely diverse, so this journal includes a range of materials generated for purposeful delivery into the body (food, medicines, diagnostics and prosthetics), to consumer products (e.g. paints, cosmetics, electronics and clothing), and particles designed for environmental applications (e.g. remediation). It is the nano-size range if these materials which unifies them and defines the scope of Nanotoxicology . While the term ‘toxicology’ indicates risk, the journal Nanotoxicology also aims to encompass studies that enhance safety during the production, use and disposal of nanomaterials. Well-controlled studies demonstrating a lack of exposure, hazard or risk associated with nanomaterials, or studies aiming to improve biocompatibility are welcomed and encouraged, as such studies will lead to an advancement of nanotechnology. Furthermore, many nanoparticles are developed with the intention to improve human health (e.g. antimicrobial agents), and again, such articles are encouraged. In order to promote quality, Nanotoxicology will prioritise publications that have demonstrated characterisation of the nanomaterials investigated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信