Stefan Pauliuk, Fabio Carrer, Niko Heeren, Edgar G Hertwich
{"title":"Scenario analysis of supply- and demand-side solutions for circular economy and climate change mitigation in the global building sector.","authors":"Stefan Pauliuk, Fabio Carrer, Niko Heeren, Edgar G Hertwich","doi":"10.1111/jiec.13557","DOIUrl":null,"url":null,"abstract":"<p><p>Residential and non-residential buildings are a major contributor to human well-being. At the same time, buildings cause 30% of final energy use, 18% of greenhouse gas emissions (GHGE), and about 65% of material accumulation globally. With electrification and higher energy efficiency of buildings, material-related emissions gain relevance. The circular economy (CE) strategies, <i>narrow, slow, and close</i>, together with wooden buildings, can reduce material-related emissions. We provide a comprehensive set of building stock transformation scenarios for 10 world regions until 2060, using the resource efficiency climate change model of the stock-flow-service nexus and including the full CE spectrum plus wood-intensive buildings. The 2020-2050 global cumulative new construction ranges from 150 to 280 billion m<sup>2</sup> for residential and 70-120 billion m<sup>2</sup> for non-residential buildings. Ambitious CE reduces cumulative 2020-2050 primary material demand from 80 to 30 gigatons (Gt) for cement and from 35 to 15 Gt for steel. Lowering floor space demand by 1 m<sup>2</sup> per capita leads to global savings of 800-2500 megatons (Mt) of cement, 300-1000 Mt of steel, and 3-10 Gt CO<sub>2</sub>-eq, depending on industry decarbonization and CE roll-out. Each additional Mt of structural timber leads to savings of 0.4-0.55 Mt of cement, 0.6-0.85 Mt of steel, and 0.8-1.8 Mt CO<sub>2</sub>-eq of system-wide GHGE. CE reduces 2020-2050 cumulative GHGE by up to 44%, where the highest contribution comes from the <i>narrow</i> CE strategies, that is, lower floorspace and lightweight buildings. Very low carbon emission trajectories are possible only when combining supply- and demand-side strategies. This article met the requirements for a gold-gold <i>JIE</i> data openness badge described at http://jie.click/badges.</p>","PeriodicalId":16050,"journal":{"name":"Journal of Industrial Ecology","volume":"28 6","pages":"1699-1715"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667659/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/jiec.13557","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Residential and non-residential buildings are a major contributor to human well-being. At the same time, buildings cause 30% of final energy use, 18% of greenhouse gas emissions (GHGE), and about 65% of material accumulation globally. With electrification and higher energy efficiency of buildings, material-related emissions gain relevance. The circular economy (CE) strategies, narrow, slow, and close, together with wooden buildings, can reduce material-related emissions. We provide a comprehensive set of building stock transformation scenarios for 10 world regions until 2060, using the resource efficiency climate change model of the stock-flow-service nexus and including the full CE spectrum plus wood-intensive buildings. The 2020-2050 global cumulative new construction ranges from 150 to 280 billion m2 for residential and 70-120 billion m2 for non-residential buildings. Ambitious CE reduces cumulative 2020-2050 primary material demand from 80 to 30 gigatons (Gt) for cement and from 35 to 15 Gt for steel. Lowering floor space demand by 1 m2 per capita leads to global savings of 800-2500 megatons (Mt) of cement, 300-1000 Mt of steel, and 3-10 Gt CO2-eq, depending on industry decarbonization and CE roll-out. Each additional Mt of structural timber leads to savings of 0.4-0.55 Mt of cement, 0.6-0.85 Mt of steel, and 0.8-1.8 Mt CO2-eq of system-wide GHGE. CE reduces 2020-2050 cumulative GHGE by up to 44%, where the highest contribution comes from the narrow CE strategies, that is, lower floorspace and lightweight buildings. Very low carbon emission trajectories are possible only when combining supply- and demand-side strategies. This article met the requirements for a gold-gold JIE data openness badge described at http://jie.click/badges.
期刊介绍:
The Journal of Industrial Ecology addresses a series of related topics:
material and energy flows studies (''industrial metabolism'')
technological change
dematerialization and decarbonization
life cycle planning, design and assessment
design for the environment
extended producer responsibility (''product stewardship'')
eco-industrial parks (''industrial symbiosis'')
product-oriented environmental policy
eco-efficiency
Journal of Industrial Ecology is open to and encourages submissions that are interdisciplinary in approach. In addition to more formal academic papers, the journal seeks to provide a forum for continuing exchange of information and opinions through contributions from scholars, environmental managers, policymakers, advocates and others involved in environmental science, management and policy.