Comprehensive Predictions of Mef2-Mediated Chromatin Loops, Which May Inhibit Ubx Binding by Blocking Low-Affinity Binding Sites.

IF 2.2 Q3 DEVELOPMENTAL BIOLOGY
Katrin Domsch
{"title":"Comprehensive Predictions of Mef2-Mediated Chromatin Loops, Which May Inhibit Ubx Binding by Blocking Low-Affinity Binding Sites.","authors":"Katrin Domsch","doi":"10.3390/jdb12040033","DOIUrl":null,"url":null,"abstract":"<p><p>Gene regulation depends on the interaction between chromatin-associated factors, such as transcription factors (TFs), which promote chromatin loops to ensure tight contact between enhancer and promoter regions. So far, positive interactions that lead to gene activation have been the main focus of research, but regulations related to blocking or inhibiting factor binding are also essential to maintaining a defined cellular status. To understand these interactions in greater detail, I investigated the possibility of the muscle differentiation factor Mef2 to prevent early Hox factor binding, leading to the proper timing of regulatory processes and the activation of differentiation events. My investigations relied on a collection of publicly available genome-wide binding data sets of Mef2 and Ubx (as the Hox factor), Capture-C interactions, and ATAC-seq analysis in <i>Mef2</i> mutant cells. The analysis indicated that Mef2 can form possible chromatin loops to Ubx-bound regions. These regions contain low-affinity Ubx binding sites, and the chromatin architecture is independent of Mef2's function. High levels of Ubx may disrupt the loops and allow specific Ubx bindings to regulate defined targets. In summary, my investigations highlight that the use of many publicly available data sets enables computational approaches to make robust predictions and, for the first time, suggest a molecular function of Mef2 as a preventer of Hox binding, indicating that it may act as a timer for muscle differentiation.</p>","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":"12 4","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jdb12040033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Gene regulation depends on the interaction between chromatin-associated factors, such as transcription factors (TFs), which promote chromatin loops to ensure tight contact between enhancer and promoter regions. So far, positive interactions that lead to gene activation have been the main focus of research, but regulations related to blocking or inhibiting factor binding are also essential to maintaining a defined cellular status. To understand these interactions in greater detail, I investigated the possibility of the muscle differentiation factor Mef2 to prevent early Hox factor binding, leading to the proper timing of regulatory processes and the activation of differentiation events. My investigations relied on a collection of publicly available genome-wide binding data sets of Mef2 and Ubx (as the Hox factor), Capture-C interactions, and ATAC-seq analysis in Mef2 mutant cells. The analysis indicated that Mef2 can form possible chromatin loops to Ubx-bound regions. These regions contain low-affinity Ubx binding sites, and the chromatin architecture is independent of Mef2's function. High levels of Ubx may disrupt the loops and allow specific Ubx bindings to regulate defined targets. In summary, my investigations highlight that the use of many publicly available data sets enables computational approaches to make robust predictions and, for the first time, suggest a molecular function of Mef2 as a preventer of Hox binding, indicating that it may act as a timer for muscle differentiation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Developmental Biology
Journal of Developmental Biology Biochemistry, Genetics and Molecular Biology-Developmental Biology
CiteScore
4.10
自引率
18.50%
发文量
44
审稿时长
11 weeks
期刊介绍: The Journal of Developmental Biology (ISSN 2221-3759) is an international, peer-reviewed, quick-refereeing, open access journal, which publishes reviews, research papers and communications on the development of multicellular organisms at the molecule, cell, tissue, organ and whole organism levels. Our aim is to encourage researchers to effortlessly publish their new findings or concepts rapidly in an open access medium, overseen by their peers. There is no restriction on the length of the papers; the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Journal of Developmental Biology focuses on: -Development mechanisms and genetics -Cell differentiation -Embryonal development -Tissue/organism growth -Metamorphosis and regeneration of the organisms. It involves many biological fields, such as Molecular biology, Genetics, Physiology, Cell biology, Anatomy, Embryology, Cancer research, Neurobiology, Immunology, Ecology, Evolutionary biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信