Stuart M Chesher, Carlo Martinotti, Dale W Chapman, Simon M Rosalie, Paula C Charlton, Kevin J Netto
{"title":"Automatic Recognition of Motor Skills in Triathlon: A Novel Tool for Measuring Movement Cadence and Cycling Tasks.","authors":"Stuart M Chesher, Carlo Martinotti, Dale W Chapman, Simon M Rosalie, Paula C Charlton, Kevin J Netto","doi":"10.3390/jfmk9040269","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: The purpose of this research was to create a peak detection algorithm and machine learning model for use in triathlon. The algorithm and model aimed to automatically measure movement cadence in all three disciplines of a triathlon using data from a single inertial measurement unit and to recognise the occurrence and duration of cycling task changes. <b>Methods</b>: Six triathletes were recruited to participate in a triathlon while wearing a single trunk-mounted measurement unit and were filmed throughout. Following an initial analysis, a further six triathletes were recruited to collect additional cycling data to train the machine learning model to more effectively recognise cycling task changes. <b>Results</b>: The peak-counting algorithm successfully detected 98.7% of swimming strokes, with a root mean square error of 2.7 swimming strokes. It detected 97.8% of cycling pedal strokes with a root mean square error of 9.1 pedal strokes, and 99.4% of running strides with a root mean square error of 1.2 running strides. Additionally, the machine learning model was 94% (±5%) accurate at distinguishing between 'in-saddle' and 'out-of-saddle' riding, but it was unable to distinguish between 'in-saddle' riding and 'coasting' based on tri-axial acceleration and angular velocity. However, it displayed poor sensitivity to detect 'out-of-saddle' efforts in uncontrolled conditions which improved when conditions were further controlled. <b>Conclusions</b>: A custom peak detection algorithm and machine learning model are effective tools to automatically analyse triathlon performance.</p>","PeriodicalId":16052,"journal":{"name":"Journal of Functional Morphology and Kinesiology","volume":"9 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11676696/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Morphology and Kinesiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jfmk9040269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: The purpose of this research was to create a peak detection algorithm and machine learning model for use in triathlon. The algorithm and model aimed to automatically measure movement cadence in all three disciplines of a triathlon using data from a single inertial measurement unit and to recognise the occurrence and duration of cycling task changes. Methods: Six triathletes were recruited to participate in a triathlon while wearing a single trunk-mounted measurement unit and were filmed throughout. Following an initial analysis, a further six triathletes were recruited to collect additional cycling data to train the machine learning model to more effectively recognise cycling task changes. Results: The peak-counting algorithm successfully detected 98.7% of swimming strokes, with a root mean square error of 2.7 swimming strokes. It detected 97.8% of cycling pedal strokes with a root mean square error of 9.1 pedal strokes, and 99.4% of running strides with a root mean square error of 1.2 running strides. Additionally, the machine learning model was 94% (±5%) accurate at distinguishing between 'in-saddle' and 'out-of-saddle' riding, but it was unable to distinguish between 'in-saddle' riding and 'coasting' based on tri-axial acceleration and angular velocity. However, it displayed poor sensitivity to detect 'out-of-saddle' efforts in uncontrolled conditions which improved when conditions were further controlled. Conclusions: A custom peak detection algorithm and machine learning model are effective tools to automatically analyse triathlon performance.