Stefjord Todolli, Ekaterina V Nizovtseva, Nicolas Clauvelin, Ondrej Maxian, Vasily M Studitsky, Wilma K Olson
{"title":"Geometric variations in nucleosomal DNA dictate higher-order chromatin structure and enhancer-promoter communication.","authors":"Stefjord Todolli, Ekaterina V Nizovtseva, Nicolas Clauvelin, Ondrej Maxian, Vasily M Studitsky, Wilma K Olson","doi":"10.1063/5.0240991","DOIUrl":null,"url":null,"abstract":"<p><p>The dynamic organization of chromatin plays an essential role in the regulation of genetic activity, interconverting between open and compact forms at the global level. The mechanisms underlying these large-scale changes remain a topic of widespread interest. The simulations of nucleosome-decorated DNA reported herein reveal profound effects of the nucleosome itself on overall chromatin properties. Models that capture the long-range communication between proteins on nucleosome-decorated DNA chains incorporate DNA pathways different from those that were previously proposed based on ultracentrifugation and chemical cross-linking data. New quantitative biochemical assays measuring the rates of communication between interacting proteins bound to a promoter and an enhancer at the ends of saturated, precisely positioned, nucleosome-decorated DNA chains reveal a chromatin architecture with a three-nucleosome repeat, a model inconsistent with the two-start configurations deduced from earlier physical studies. Accompanying computations uncover small differences in the twisting of successive base pairs that seemingly give rise to the observed global properties. These data suggest that the novel state of chromatin determined under physiological conditions differs from that deduced under standard physical conditions, likely reflecting the different salt conditions used in the two types of experiments. This novel chromatin state may be important for a number of DNA transactions that occur in the cell nucleus.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"161 24","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11681976/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0240991","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The dynamic organization of chromatin plays an essential role in the regulation of genetic activity, interconverting between open and compact forms at the global level. The mechanisms underlying these large-scale changes remain a topic of widespread interest. The simulations of nucleosome-decorated DNA reported herein reveal profound effects of the nucleosome itself on overall chromatin properties. Models that capture the long-range communication between proteins on nucleosome-decorated DNA chains incorporate DNA pathways different from those that were previously proposed based on ultracentrifugation and chemical cross-linking data. New quantitative biochemical assays measuring the rates of communication between interacting proteins bound to a promoter and an enhancer at the ends of saturated, precisely positioned, nucleosome-decorated DNA chains reveal a chromatin architecture with a three-nucleosome repeat, a model inconsistent with the two-start configurations deduced from earlier physical studies. Accompanying computations uncover small differences in the twisting of successive base pairs that seemingly give rise to the observed global properties. These data suggest that the novel state of chromatin determined under physiological conditions differs from that deduced under standard physical conditions, likely reflecting the different salt conditions used in the two types of experiments. This novel chromatin state may be important for a number of DNA transactions that occur in the cell nucleus.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.