Rovibrationally resolved Rayleigh and Raman scattering cross sections for molecular hydrogen.

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Adam J C Singor, Liam H Scarlett, Mark C Zammit, Igor Bray, Dmitry V Fursa
{"title":"Rovibrationally resolved Rayleigh and Raman scattering cross sections for molecular hydrogen.","authors":"Adam J C Singor, Liam H Scarlett, Mark C Zammit, Igor Bray, Dmitry V Fursa","doi":"10.1063/5.0235703","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate Rayleigh and Raman scattering cross sections, tensor components, depolarization ratios, and reversal coefficients for all rovibrational transitions within the X1Σg+ ground electronic state of H2 have been calculated. Raman spectra have been generated using these data. A method for calculating Raman scattering cross sections is formulated that is valid below the ionization threshold and in the region containing resonances, which explicitly accounts for all bound and dissociative vibrational levels of the bound intermediate electronic states and approximately accounts for the ionization continuum. A representative set of cross sections is presented for incident photon energies below 15 eV and compared with existing results in the literature where possible. Convergence of our results with an increasing number of bound intermediate electronic states is demonstrated. The accuracy of the Placzek-Teller approximation is discussed. The effect of accounting for the intermediate ionization continuum is investigated. Local thermal equilibrium cross sections are calculated for Rayleigh and Raman scattering. This work represents the most accurate and complete treatment of Raman scattering for molecular hydrogen to date. A total of 9582 Rayleigh and Raman scattering cross sections have been generated and are openly available on Zenodo under an open-source Creative Commons Attribution license at https://zenodo.org/doi/10.5281/zenodo.13441471.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"161 24","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0235703","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate Rayleigh and Raman scattering cross sections, tensor components, depolarization ratios, and reversal coefficients for all rovibrational transitions within the X1Σg+ ground electronic state of H2 have been calculated. Raman spectra have been generated using these data. A method for calculating Raman scattering cross sections is formulated that is valid below the ionization threshold and in the region containing resonances, which explicitly accounts for all bound and dissociative vibrational levels of the bound intermediate electronic states and approximately accounts for the ionization continuum. A representative set of cross sections is presented for incident photon energies below 15 eV and compared with existing results in the literature where possible. Convergence of our results with an increasing number of bound intermediate electronic states is demonstrated. The accuracy of the Placzek-Teller approximation is discussed. The effect of accounting for the intermediate ionization continuum is investigated. Local thermal equilibrium cross sections are calculated for Rayleigh and Raman scattering. This work represents the most accurate and complete treatment of Raman scattering for molecular hydrogen to date. A total of 9582 Rayleigh and Raman scattering cross sections have been generated and are openly available on Zenodo under an open-source Creative Commons Attribution license at https://zenodo.org/doi/10.5281/zenodo.13441471.

分子氢的振动分辨瑞利和拉曼散射截面。
精确的瑞利和拉曼散射截面、张量分量、退极化比和反转系数在H2的X1Σg+基电子态内的所有旋转振动跃迁已经计算出来。利用这些数据生成了拉曼光谱。提出了一种计算拉曼散射截面的方法,该方法在电离阈值以下和包含共振的区域有效,它明确地说明了所有结合和解离的中间电子态振动水平,并近似地说明了电离连续体。本文给出了入射光子能量低于15 eV的一组代表性截面,并在可能的情况下与文献中的现有结果进行了比较。我们的结果随着束缚中间电子态数目的增加而收敛。讨论了Placzek-Teller近似的精度。研究了计算中间电离连续谱的影响。计算了瑞利散射和拉曼散射的局部热平衡截面。这项工作代表了迄今为止对氢分子拉曼散射最精确和完整的处理。总共生成了9582张瑞利散射和拉曼散射的横截面,并在开源的知识共享署名许可下在Zenodo上公开提供,网址为https://zenodo.org/doi/10.5281/zenodo.13441471。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信