{"title":"Repeated hyperbaric oxygen exposure accelerates fatigue and impairs SR-calcium release in mice.","authors":"Heath G Gasier, Jack Kovach, Kris Porter","doi":"10.1152/japplphysiol.00723.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Breathing hyperoxic gas is common in diving and accelerates fatigue after prolonged and repeated exposure. The mechanism(s) remain unknown but may be related to increased oxidants that interfere with skeletal muscle calcium trafficking or impair aerobic ATP production. To determine these possibilities, C57BL/6J mice were exposed to hyperbaric oxygen (HBO<sub>2</sub>) for 4-h on three consecutive days or remained in room air. Post-final exposure, fatigue was determined by grip strength and run to exhaustion tests. Other measurements included indices of oxidant stress and antioxidant defenses, mitochondrial bioenergetics, caffeine-induced sarcoplasmic reticulum-calcium release, and S-nitrosylation of ryanodine receptor 1 (RyR1). Despite grip strength being unaffected by repeated HBO<sub>2</sub> exposure, mean running time was reduced by 50%. In skeletal muscle from HBO<sub>2</sub> exposed mice, superoxide production was significantly increased, resulting in elevated lipid and DNA (nuclear and mitochondrial) oxidation. Accompanying increased oxidant stress was a reduction in glutathione content and increased <i>Sod1</i> and <i>Hmox1</i> gene expression; <i>Ucp3</i> mRNA was reduced. Mitochondrial respiration, membrane potential, and NAD<sup>+</sup>/NADH were not influenced by HBO<sub>2</sub>. In contrast, caffeine induced SR-calcium release was reduced by 66% and S-nitrosylation of RyR1 was increased by 45%. Exposing mice to repeated HBO<sub>2</sub> increases oxidant stress that activates some antioxidant responses. Mitochondrial function is not altered and could be related to decreased production of UCP3 that serves to maintain the electrochemical proton gradient. S-nitrosylation of RyR1 may promote SR-calcium leak and reduce content, a potential mechanism for repeated HBO<sub>2</sub>-induced fatigue.</p>","PeriodicalId":15160,"journal":{"name":"Journal of applied physiology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/japplphysiol.00723.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Breathing hyperoxic gas is common in diving and accelerates fatigue after prolonged and repeated exposure. The mechanism(s) remain unknown but may be related to increased oxidants that interfere with skeletal muscle calcium trafficking or impair aerobic ATP production. To determine these possibilities, C57BL/6J mice were exposed to hyperbaric oxygen (HBO2) for 4-h on three consecutive days or remained in room air. Post-final exposure, fatigue was determined by grip strength and run to exhaustion tests. Other measurements included indices of oxidant stress and antioxidant defenses, mitochondrial bioenergetics, caffeine-induced sarcoplasmic reticulum-calcium release, and S-nitrosylation of ryanodine receptor 1 (RyR1). Despite grip strength being unaffected by repeated HBO2 exposure, mean running time was reduced by 50%. In skeletal muscle from HBO2 exposed mice, superoxide production was significantly increased, resulting in elevated lipid and DNA (nuclear and mitochondrial) oxidation. Accompanying increased oxidant stress was a reduction in glutathione content and increased Sod1 and Hmox1 gene expression; Ucp3 mRNA was reduced. Mitochondrial respiration, membrane potential, and NAD+/NADH were not influenced by HBO2. In contrast, caffeine induced SR-calcium release was reduced by 66% and S-nitrosylation of RyR1 was increased by 45%. Exposing mice to repeated HBO2 increases oxidant stress that activates some antioxidant responses. Mitochondrial function is not altered and could be related to decreased production of UCP3 that serves to maintain the electrochemical proton gradient. S-nitrosylation of RyR1 may promote SR-calcium leak and reduce content, a potential mechanism for repeated HBO2-induced fatigue.
期刊介绍:
The Journal of Applied Physiology publishes the highest quality original research and reviews that examine novel adaptive and integrative physiological mechanisms in humans and animals that advance the field. The journal encourages the submission of manuscripts that examine the acute and adaptive responses of various organs, tissues, cells and/or molecular pathways to environmental, physiological and/or pathophysiological stressors. As an applied physiology journal, topics of interest are not limited to a particular organ system. The journal, therefore, considers a wide array of integrative and translational research topics examining the mechanisms involved in disease processes and mitigation strategies, as well as the promotion of health and well-being throughout the lifespan. Priority is given to manuscripts that provide mechanistic insight deemed to exert an impact on the field.