Roberta Anjos de Jesus, Ivani Meneses Costa, Katlin Ivon Barrios Eguiluz, Giancarlo Richard Salazar-Banda
{"title":"The role of biosilica and its potential for sensing technologies: A review.","authors":"Roberta Anjos de Jesus, Ivani Meneses Costa, Katlin Ivon Barrios Eguiluz, Giancarlo Richard Salazar-Banda","doi":"10.1016/j.jbiotec.2024.12.010","DOIUrl":null,"url":null,"abstract":"<p><p>Efficiently managing agricultural waste while innovating to derive value-added products is a significant challenge in the 21st century. In recent decades, these by-products have been increasingly explored as alternative sources for materials such as biosilica. Biosilica is renowned for its high surface area, biocompatibility, chemical stability, and modifiable surface, which makes it suitable for various applications. Additionally, the biomineralization process-biosilicification-in living organisms like diatoms offers an eco-friendly pathway for silica production. Despite the potential applications of biosilica, research on its use in sensor technology remains limited. This review aims to address this gap by covering the primary methodologies for extracting silica from biomass, discussing key techniques for its characterization, and highlighting its potential for functionalization in diverse applications. Special emphasis is given to the utility of diatom-derived biosilicas in developing sensors for detecting gaseous molecules and biomolecules.</p>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":" ","pages":"158-174"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jbiotec.2024.12.010","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Efficiently managing agricultural waste while innovating to derive value-added products is a significant challenge in the 21st century. In recent decades, these by-products have been increasingly explored as alternative sources for materials such as biosilica. Biosilica is renowned for its high surface area, biocompatibility, chemical stability, and modifiable surface, which makes it suitable for various applications. Additionally, the biomineralization process-biosilicification-in living organisms like diatoms offers an eco-friendly pathway for silica production. Despite the potential applications of biosilica, research on its use in sensor technology remains limited. This review aims to address this gap by covering the primary methodologies for extracting silica from biomass, discussing key techniques for its characterization, and highlighting its potential for functionalization in diverse applications. Special emphasis is given to the utility of diatom-derived biosilicas in developing sensors for detecting gaseous molecules and biomolecules.
期刊介绍:
The Journal of Biotechnology has an open access mirror journal, the Journal of Biotechnology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal provides a medium for the rapid publication of both full-length articles and short communications on novel and innovative aspects of biotechnology. The Journal will accept papers ranging from genetic or molecular biological positions to those covering biochemical, chemical or bioprocess engineering aspects as well as computer application of new software concepts, provided that in each case the material is directly relevant to biotechnological systems. Papers presenting information of a multidisciplinary nature that would not be suitable for publication in a journal devoted to a single discipline, are particularly welcome.