Alleviation of cadmium toxicity and minimizing its accumulation in rice plants by methyl jasmonate: performance and mechanisms.

IF 4.1 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Ting Wei, Hong Li, Yuyao Wang, Ming Chi, Junkang Guo, Honglei Jia, Chao Zhang
{"title":"Alleviation of cadmium toxicity and minimizing its accumulation in rice plants by methyl jasmonate: performance and mechanisms.","authors":"Ting Wei, Hong Li, Yuyao Wang, Ming Chi, Junkang Guo, Honglei Jia, Chao Zhang","doi":"10.1016/j.jbiotec.2024.12.009","DOIUrl":null,"url":null,"abstract":"<p><p>Heavy metal pollution is a worldwide problem that threaten agricultural production and human health. Methyl jasmonate (MeJA) is a phytohormone that could enhance plant resistance against various stresses. However, the mechanism of MeJA in cadmium (Cd) uptake, distribution, and translocation in rice plants remains elusive. In this study, we found that the Cd induced-growth inhibition was ameliorated by MeJA. Upon MeJA application, Cd content in root and shoot was decreased by 10.15% and 36.39%, which paralleled with less Cd<sup>2+</sup> influx of rice roots and depressed expression of the cation transporters (OsNramp1 and OsNramp5). The subcellular distribution revealed that MeJA enriched Cd distribution in cell wall, which was accompanied by increased cell wall thickness and altered cell wall polysaccharide (pectin, cellulose, hemicellulose) content, meanwhile, the Cd content in pectin, cellulose, hemicellulose was increased, the FTIR analysis implied that functional groups (especially -OH and COO-) on cell wall were involved in Cd fixation. The root to shoot translocation of Cd was hindered by exogenous MeJA, this was validated by the decreased expression of OsHMA2 in root and declined Cd level in xylem sap. Overall, our results revealed that MeJA could act as a foliar resistance control substance to reduce Cd accumulation in rice plants. The detailed molecular mechanisms of MeJA in Cd detoxification in plants still need further investigation.</p>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jbiotec.2024.12.009","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Heavy metal pollution is a worldwide problem that threaten agricultural production and human health. Methyl jasmonate (MeJA) is a phytohormone that could enhance plant resistance against various stresses. However, the mechanism of MeJA in cadmium (Cd) uptake, distribution, and translocation in rice plants remains elusive. In this study, we found that the Cd induced-growth inhibition was ameliorated by MeJA. Upon MeJA application, Cd content in root and shoot was decreased by 10.15% and 36.39%, which paralleled with less Cd2+ influx of rice roots and depressed expression of the cation transporters (OsNramp1 and OsNramp5). The subcellular distribution revealed that MeJA enriched Cd distribution in cell wall, which was accompanied by increased cell wall thickness and altered cell wall polysaccharide (pectin, cellulose, hemicellulose) content, meanwhile, the Cd content in pectin, cellulose, hemicellulose was increased, the FTIR analysis implied that functional groups (especially -OH and COO-) on cell wall were involved in Cd fixation. The root to shoot translocation of Cd was hindered by exogenous MeJA, this was validated by the decreased expression of OsHMA2 in root and declined Cd level in xylem sap. Overall, our results revealed that MeJA could act as a foliar resistance control substance to reduce Cd accumulation in rice plants. The detailed molecular mechanisms of MeJA in Cd detoxification in plants still need further investigation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of biotechnology
Journal of biotechnology 工程技术-生物工程与应用微生物
CiteScore
8.90
自引率
2.40%
发文量
190
审稿时长
45 days
期刊介绍: The Journal of Biotechnology has an open access mirror journal, the Journal of Biotechnology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. The Journal provides a medium for the rapid publication of both full-length articles and short communications on novel and innovative aspects of biotechnology. The Journal will accept papers ranging from genetic or molecular biological positions to those covering biochemical, chemical or bioprocess engineering aspects as well as computer application of new software concepts, provided that in each case the material is directly relevant to biotechnological systems. Papers presenting information of a multidisciplinary nature that would not be suitable for publication in a journal devoted to a single discipline, are particularly welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信