Lei Xu, Guanhua Sun, Jiahui Chen, Xiaoxu Wu, Min Hu, Fang Zhou, Zhi Li
{"title":"Enhanced Thermal Safety of Hydrophobic SiO<sub>2</sub> Aerogels Through Introduction of Layered Double Oxides.","authors":"Lei Xu, Guanhua Sun, Jiahui Chen, Xiaoxu Wu, Min Hu, Fang Zhou, Zhi Li","doi":"10.3390/gels10120844","DOIUrl":null,"url":null,"abstract":"<p><p>This research enhances the thermal safety of hydrophobic silica aerogel (HSA) by integrating layered double oxides (LDOs). XRD and FTIR confirm that the introduction of LDOs does not affect the formation of SA. The LDO/SA composites demonstrate a low density (0.14-0.16 g/cm<sup>3</sup>), low thermal conductivity (23.28-28.72 mW/(m·K)), high porosity (93.4-96.1%), and a high surface area (899.2-1006.4 m<sup>2</sup>/g). The TG-DSC results reveal that LDO/SA shows enhanced thermal stability, with increases of 49 °C in the decomposition onset temperature and 47.4 °C in the peak decomposition temperature. The gross calorific value of LDO/SA-15% (with 15 wt% LDO) exhibits a 23.9% reduction in comparison to that of pure SA. The decrease in gross calorific value, along with improved thermal stability, indicates a boost in the thermal safety characteristics of the LDO/SA composites. This study demonstrates that incorporating LDOs enhances the thermal safety of HSA, while preserving its superior performance, thus broadening its potential applications in thermal insulation.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"10 12","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11676000/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels10120844","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This research enhances the thermal safety of hydrophobic silica aerogel (HSA) by integrating layered double oxides (LDOs). XRD and FTIR confirm that the introduction of LDOs does not affect the formation of SA. The LDO/SA composites demonstrate a low density (0.14-0.16 g/cm3), low thermal conductivity (23.28-28.72 mW/(m·K)), high porosity (93.4-96.1%), and a high surface area (899.2-1006.4 m2/g). The TG-DSC results reveal that LDO/SA shows enhanced thermal stability, with increases of 49 °C in the decomposition onset temperature and 47.4 °C in the peak decomposition temperature. The gross calorific value of LDO/SA-15% (with 15 wt% LDO) exhibits a 23.9% reduction in comparison to that of pure SA. The decrease in gross calorific value, along with improved thermal stability, indicates a boost in the thermal safety characteristics of the LDO/SA composites. This study demonstrates that incorporating LDOs enhances the thermal safety of HSA, while preserving its superior performance, thus broadening its potential applications in thermal insulation.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.