Patrik Kovács, Szandra Schwarcz, Petra Nyerges, Tímea Ingrid Bíró, Gyula Ujlaki, Péter Bai, Edit Mikó
{"title":"Anticarcinogenic effects of ursodeoxycholic acid in pancreatic adenocarcinoma cell models.","authors":"Patrik Kovács, Szandra Schwarcz, Petra Nyerges, Tímea Ingrid Bíró, Gyula Ujlaki, Péter Bai, Edit Mikó","doi":"10.3389/fcell.2024.1487685","DOIUrl":null,"url":null,"abstract":"<p><p>Changes to the composition of the microbiome in neoplasia, is termed oncobiosis, may affect tumor behavior through the changes to the secretion of bacterial metabolites. In this study we show, that ursodeoxycholic acid (UDCA), a bacterial metabolite, has cytostatic properties in pancreatic adenocarcinoma cell (PDAC) models. UDCA in concentrations corresponding to the human serum reference range suppressed PDAC cell proliferation. UDCA inhibited the expression of epithelial mesenchymal transition (EMT)-related markers and invasion capacity of PDAC cells. UDCA treatment increased oxidative/nitrosative stress by reducing the expression of nuclear factor, erythroid 2-like 2 (NRF2), inducing inducible nitric oxide synthase (iNOS) and nitrotyrosine levels and enhancing lipid peroxidation. Furthermore, UDCA reduced the expression of cancer stem cell markers and the proportion of cancer stem cells. Suppression of oxidative stress by antioxidants, blunted the UDCA-induced reduction in cancer stemness. Finally, we showed that UDCA induced mitochondrial oxidative metabolism. UDCA did not modulate the effectiveness of chemotherapy agents used in the chemotherapy treatment of pancreatic adenocarcinoma. The antineoplastic effects of UDCA, observed here, may contribute to the induction of cytostasis in PDAC cell models by providing a more oxidative/nitrosative environment.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"12 ","pages":"1487685"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668698/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cell and Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fcell.2024.1487685","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Changes to the composition of the microbiome in neoplasia, is termed oncobiosis, may affect tumor behavior through the changes to the secretion of bacterial metabolites. In this study we show, that ursodeoxycholic acid (UDCA), a bacterial metabolite, has cytostatic properties in pancreatic adenocarcinoma cell (PDAC) models. UDCA in concentrations corresponding to the human serum reference range suppressed PDAC cell proliferation. UDCA inhibited the expression of epithelial mesenchymal transition (EMT)-related markers and invasion capacity of PDAC cells. UDCA treatment increased oxidative/nitrosative stress by reducing the expression of nuclear factor, erythroid 2-like 2 (NRF2), inducing inducible nitric oxide synthase (iNOS) and nitrotyrosine levels and enhancing lipid peroxidation. Furthermore, UDCA reduced the expression of cancer stem cell markers and the proportion of cancer stem cells. Suppression of oxidative stress by antioxidants, blunted the UDCA-induced reduction in cancer stemness. Finally, we showed that UDCA induced mitochondrial oxidative metabolism. UDCA did not modulate the effectiveness of chemotherapy agents used in the chemotherapy treatment of pancreatic adenocarcinoma. The antineoplastic effects of UDCA, observed here, may contribute to the induction of cytostasis in PDAC cell models by providing a more oxidative/nitrosative environment.
期刊介绍:
Frontiers in Cell and Developmental Biology is a broad-scope, interdisciplinary open-access journal, focusing on the fundamental processes of life, led by Prof Amanda Fisher and supported by a geographically diverse, high-quality editorial board.
The journal welcomes submissions on a wide spectrum of cell and developmental biology, covering intracellular and extracellular dynamics, with sections focusing on signaling, adhesion, migration, cell death and survival and membrane trafficking. Additionally, the journal offers sections dedicated to the cutting edge of fundamental and translational research in molecular medicine and stem cell biology.
With a collaborative, rigorous and transparent peer-review, the journal produces the highest scientific quality in both fundamental and applied research, and advanced article level metrics measure the real-time impact and influence of each publication.