{"title":"A Novel Quaternary Ammonium N-Propylamiodarone Bromide Provides Long-Lasting Analgesia Against Corneal Pain.","authors":"Yumi Kotoda, Sohei Hishiyama, Jaehoon Shim, Hiroki Kobayashi, Ayasa Takamino, Masako Abe, Kenji Kashiwagi, Takashi Matsukawa, Masakazu Kotoda","doi":"10.2147/DDDT.S486031","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Corneal pain is one of the most common eye symptoms caused by various types of epithelial injuries, including traumatic abrasion, chemical injury, ulcers, ultraviolet exposure, and infection. However, current therapeutic options for corneal pain are limited. In this study, we synthesized a novel quaternary ammonium compound, N-propylamiodarone bromide (NPA), and employed a rodent model of corneal injury to investigate whether NPA offers prolonged corneal analgesia through transient receptor potential vanilloid 1 (TRPV1) channel-mediated selective cellular entry, without hindering corneal epithelial recovery.</p><p><strong>Methods: </strong>In the corneal injury model, 24 adult Wistar rats received a topical application of normal saline, oxybuprocaine, or NPA (n = 8 each), and corneal pain sensitivity was assessed using the von Frey technique. Another set of 32 rats with intact corneas received oxybuprocaine, capsaicin (a TRPV1 agonist), or NPA with or without capsaicin (n = 8 each), followed by a mechanical sensitivity evaluation. Potential adverse effects on normal epithelial recovery were evaluated using fluorescence and hematoxylin-eosin staining in an additional 8 rats with corneal injury.</p><p><strong>Results: </strong>In the corneal injury model, NPA produced significantly longer-lasting analgesia than oxybuprocaine (duration of the maximum effect: 215 ± 11 vs 25 ± 2 min, P < 0.001). None of the animals presented any signs of eye irritability. In contrast to injured eyes, NPA alone did not significantly increase mechanical sensitivity in naïve eyes. However, the co-administration of NPA and capsaicin produced significantly longer-lasting corneal anesthesia than oxybuprocaine (duration of the maximum effect: 165 ± 15 vs 31 ± 2 min, P < 0.001). NPA did not hamper wound healing.</p><p><strong>Conclusion: </strong>The novel quaternary ammonium NPA produced long-lasting analgesia against corneal injury without hampering corneal recovery, suggesting that it is a potential candidate for analgesic medicine targeting corneal pain.</p>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":"18 ","pages":"6199-6208"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11669046/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DDDT.S486031","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Corneal pain is one of the most common eye symptoms caused by various types of epithelial injuries, including traumatic abrasion, chemical injury, ulcers, ultraviolet exposure, and infection. However, current therapeutic options for corneal pain are limited. In this study, we synthesized a novel quaternary ammonium compound, N-propylamiodarone bromide (NPA), and employed a rodent model of corneal injury to investigate whether NPA offers prolonged corneal analgesia through transient receptor potential vanilloid 1 (TRPV1) channel-mediated selective cellular entry, without hindering corneal epithelial recovery.
Methods: In the corneal injury model, 24 adult Wistar rats received a topical application of normal saline, oxybuprocaine, or NPA (n = 8 each), and corneal pain sensitivity was assessed using the von Frey technique. Another set of 32 rats with intact corneas received oxybuprocaine, capsaicin (a TRPV1 agonist), or NPA with or without capsaicin (n = 8 each), followed by a mechanical sensitivity evaluation. Potential adverse effects on normal epithelial recovery were evaluated using fluorescence and hematoxylin-eosin staining in an additional 8 rats with corneal injury.
Results: In the corneal injury model, NPA produced significantly longer-lasting analgesia than oxybuprocaine (duration of the maximum effect: 215 ± 11 vs 25 ± 2 min, P < 0.001). None of the animals presented any signs of eye irritability. In contrast to injured eyes, NPA alone did not significantly increase mechanical sensitivity in naïve eyes. However, the co-administration of NPA and capsaicin produced significantly longer-lasting corneal anesthesia than oxybuprocaine (duration of the maximum effect: 165 ± 15 vs 31 ± 2 min, P < 0.001). NPA did not hamper wound healing.
Conclusion: The novel quaternary ammonium NPA produced long-lasting analgesia against corneal injury without hampering corneal recovery, suggesting that it is a potential candidate for analgesic medicine targeting corneal pain.
期刊介绍:
Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications.
The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas.
Specific topics covered by the journal include:
Drug target identification and validation
Phenotypic screening and target deconvolution
Biochemical analyses of drug targets and their pathways
New methods or relevant applications in molecular/drug design and computer-aided drug discovery*
Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes)
Structural or molecular biological studies elucidating molecular recognition processes
Fragment-based drug discovery
Pharmaceutical/red biotechnology
Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products**
Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development
Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing)
Preclinical development studies
Translational animal models
Mechanisms of action and signalling pathways
Toxicology
Gene therapy, cell therapy and immunotherapy
Personalized medicine and pharmacogenomics
Clinical drug evaluation
Patient safety and sustained use of medicines.