Studies on ameliorative potentials of quercetin nanoparticles against imidacloprid induced subacute genotoxicity and histopathological alteration in Swiss albino mice.

IF 2.4 4区 医学 Q3 CHEMISTRY, MEDICINAL
Vipin, Preeti Bagri, Kajal Bhardwaj, Vinay Kant, Deepika Lather
{"title":"Studies on ameliorative potentials of quercetin nanoparticles against imidacloprid induced subacute genotoxicity and histopathological alteration in Swiss albino mice.","authors":"Vipin, Preeti Bagri, Kajal Bhardwaj, Vinay Kant, Deepika Lather","doi":"10.1080/03639045.2024.2447872","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Genotoxicity assays include micronucleus test, comet assay, and malformed sperm head used to investigate the protective potential of quercetin (Que) and Que nanoparticles against imidacloprid (IMI)-induced genotoxicity in Swiss albino mice.</p><p><strong>Methods: </strong>The ionic gelation procedure was used to synthesize the Que nanoparticles and characterized for their hydrodynamic diameter, zeta potential, scanning electron microscopy (SEM), transmission electron microscopy (TEM), FT-IR, and encapsulation efficiency. A total of 48 mice were taken in eight groups with six animals in each group. Groups 1, 2, 3, and 4 received 3% gum acacia, 22 mg/kg IMI, 25 mg/kg Que and 25 mg/kg Que nanoparticles high dose (QNPs (HD)), respectively. Groups 5, 6, 7, and 8 received 22 mg/kg IMI + 25 mg/kg Que (IMI + Que), 22 mg/kg IMI + 25 mg/kg Que nanoparticles (IMI + QNPs (HD)), 22 mg/kg IMI + 12.5 mg/kg Que nanoparticle medium dose (IMI + QNPs (MD)), and 22 mg/kg IMI + 6.25 mg/kg Que nanoparticles low dose (IMI + QNPs (LD)), respectively.</p><p><strong>Results: </strong>The IMI causes genotoxicity in bone marrow cells by increasing the frequency of micronuclei and the comet tail length. Additionally, IMI is mutagenic to germ cells, as determined by a test for aberrant sperm heads. Both Que and Que nanoparticles lessen the genotoxicity that IMI induces when administered together or separately. Histopathological findings also revealed degenerative changes in bone marrow and testes in IMI administered group as compared to control.</p><p><strong>Conclusion: </strong>Quercetin and Que nanoparticles showed marked ameliorative effect by restoring the degenerative changes produced by IMI.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"1-14"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development and Industrial Pharmacy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03639045.2024.2447872","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Genotoxicity assays include micronucleus test, comet assay, and malformed sperm head used to investigate the protective potential of quercetin (Que) and Que nanoparticles against imidacloprid (IMI)-induced genotoxicity in Swiss albino mice.

Methods: The ionic gelation procedure was used to synthesize the Que nanoparticles and characterized for their hydrodynamic diameter, zeta potential, scanning electron microscopy (SEM), transmission electron microscopy (TEM), FT-IR, and encapsulation efficiency. A total of 48 mice were taken in eight groups with six animals in each group. Groups 1, 2, 3, and 4 received 3% gum acacia, 22 mg/kg IMI, 25 mg/kg Que and 25 mg/kg Que nanoparticles high dose (QNPs (HD)), respectively. Groups 5, 6, 7, and 8 received 22 mg/kg IMI + 25 mg/kg Que (IMI + Que), 22 mg/kg IMI + 25 mg/kg Que nanoparticles (IMI + QNPs (HD)), 22 mg/kg IMI + 12.5 mg/kg Que nanoparticle medium dose (IMI + QNPs (MD)), and 22 mg/kg IMI + 6.25 mg/kg Que nanoparticles low dose (IMI + QNPs (LD)), respectively.

Results: The IMI causes genotoxicity in bone marrow cells by increasing the frequency of micronuclei and the comet tail length. Additionally, IMI is mutagenic to germ cells, as determined by a test for aberrant sperm heads. Both Que and Que nanoparticles lessen the genotoxicity that IMI induces when administered together or separately. Histopathological findings also revealed degenerative changes in bone marrow and testes in IMI administered group as compared to control.

Conclusion: Quercetin and Que nanoparticles showed marked ameliorative effect by restoring the degenerative changes produced by IMI.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
82
审稿时长
4.5 months
期刊介绍: The aim of Drug Development and Industrial Pharmacy is to publish novel, original, peer-reviewed research manuscripts within relevant topics and research methods related to pharmaceutical research and development, and industrial pharmacy. Research papers must be hypothesis driven and emphasize innovative breakthrough topics in pharmaceutics and drug delivery. The journal will also consider timely critical review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信