{"title":"Drug release potential of polyacrylamide grafted-Assam Bora rice polysaccharide graft copolymer (ABRS-g-PAM) as effective controlled release polymer.","authors":"Neha Singh, Itishree Jogamaya Das, Sutapa Satpathi, Devjit Das, Bhabani Shankar Patro, Karmabeer Jena, Subhendu Chakroborty, Pankaj Dagar, Trishna Bal","doi":"10.1016/j.carres.2024.109355","DOIUrl":null,"url":null,"abstract":"<p><p>The research focuses on the characterization and evaluation of drug delivery efficiency of a microwave-assisted, free-radical synthesized polyacrylamide-grafted Assam Bora rice starch (ABRS) graft copolymer (ABRS-g-PAM). Percentage grafting efficiency (% GE) and intrinsic viscosity were chosen as the optimization parameters. The optimized ABRS-g-PAM Grade Formulation 4 (GF4) was found to be the best grade. GF4 was characterized through XRD, FTIR, TGA, DSC, and <sup>1</sup>³C NMR, confirming efficient polyacrylamide grafting onto ABRS, besides swelling studies. SEM and FESEM showed a rough GF4 surface. Further analysis using Atomic Force Microscopy (AFM) detailed the irregular, rough internal architecture. The maximum swelling of GF4 occurred at pH 7 and 0.005 (M) NaCl, demonstrating second-order swelling kinetics. The soil biodegradability study of GF4 confirmed its biocompatibility. In vitro drug release studies showed that GF4 achieved 99 % release of Rosuvastatin over 26 h, thereby supporting the controlled release behaviour of the optimized polymer.</p>","PeriodicalId":9415,"journal":{"name":"Carbohydrate Research","volume":"549 ","pages":"109355"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.carres.2024.109355","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The research focuses on the characterization and evaluation of drug delivery efficiency of a microwave-assisted, free-radical synthesized polyacrylamide-grafted Assam Bora rice starch (ABRS) graft copolymer (ABRS-g-PAM). Percentage grafting efficiency (% GE) and intrinsic viscosity were chosen as the optimization parameters. The optimized ABRS-g-PAM Grade Formulation 4 (GF4) was found to be the best grade. GF4 was characterized through XRD, FTIR, TGA, DSC, and 1³C NMR, confirming efficient polyacrylamide grafting onto ABRS, besides swelling studies. SEM and FESEM showed a rough GF4 surface. Further analysis using Atomic Force Microscopy (AFM) detailed the irregular, rough internal architecture. The maximum swelling of GF4 occurred at pH 7 and 0.005 (M) NaCl, demonstrating second-order swelling kinetics. The soil biodegradability study of GF4 confirmed its biocompatibility. In vitro drug release studies showed that GF4 achieved 99 % release of Rosuvastatin over 26 h, thereby supporting the controlled release behaviour of the optimized polymer.
期刊介绍:
Carbohydrate Research publishes reports of original research in the following areas of carbohydrate science: action of enzymes, analytical chemistry, biochemistry (biosynthesis, degradation, structural and functional biochemistry, conformation, molecular recognition, enzyme mechanisms, carbohydrate-processing enzymes, including glycosidases and glycosyltransferases), chemical synthesis, isolation of natural products, physicochemical studies, reactions and their mechanisms, the study of structures and stereochemistry, and technological aspects.
Papers on polysaccharides should have a "molecular" component; that is a paper on new or modified polysaccharides should include structural information and characterization in addition to the usual studies of rheological properties and the like. A paper on a new, naturally occurring polysaccharide should include structural information, defining monosaccharide components and linkage sequence.
Papers devoted wholly or partly to X-ray crystallographic studies, or to computational aspects (molecular mechanics or molecular orbital calculations, simulations via molecular dynamics), will be considered if they meet certain criteria. For computational papers the requirements are that the methods used be specified in sufficient detail to permit replication of the results, and that the conclusions be shown to have relevance to experimental observations - the authors'' own data or data from the literature. Specific directions for the presentation of X-ray data are given below under Results and "discussion".