Antwine W. McFarland Jr., Lawrence P. Fernando, Patrick Kellish, Sandra P. Story, Gretchen B. Schober, Sunil Kumar, Changjun Gong, Ada King, Xianchang Gong, Alain S. Leutou, Dev P. Arya
{"title":"Nucleic Acid Specificity, Cellular Localization and Reduced Toxicities of Thiazole Orange-Neomycin Conjugates","authors":"Antwine W. McFarland Jr., Lawrence P. Fernando, Patrick Kellish, Sandra P. Story, Gretchen B. Schober, Sunil Kumar, Changjun Gong, Ada King, Xianchang Gong, Alain S. Leutou, Dev P. Arya","doi":"10.1002/open.202400189","DOIUrl":null,"url":null,"abstract":"<p>Selective binding of small molecule ligands to nucleic acids with high affinity and limited toxicity remains an important goal in the development of compounds that can probe DNA or RNA in cells. Thiazole orange is a cell semi-permeant, fluorescent cyanine dye, with low background noise, that binds several forms of nucleic acids. However, thiazole orange can exhibit cytotoxicity when used at high concentration and/or with prolonged exposure. Neomycin is a non-fluorescent antibiotic with affinity for several forms of nucleic acids, but does not readily enter mammalian cells. Conjugation of neomycin with thiazole orange can exploit the properties of each individual compound, yielding a small molecule that could be used for nontoxic application in cellular analysis by microscopic imaging. We demonstrate that conjugation of neomycin with thiazole orange increases the cell permeability of neomycin, decreases the cytotoxicity of thiazole orange, and exhibits a greater degree of intracellular RNA targeted localization in the nucleolus, when compared to thiazole orange. Relative to thiazole orange, the conjugated compounds showed a much higher degree of stabilization of the nucleic acids as reflected in a greater denaturation temperature. Ultimately, our studies indicate that the conjugated thiazole orange-neomycin compounds can be used as an RNA targeted, less cytotoxic alternative for cellular labeling.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":"14 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/open.202400189","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistryOpen","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/open.202400189","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Selective binding of small molecule ligands to nucleic acids with high affinity and limited toxicity remains an important goal in the development of compounds that can probe DNA or RNA in cells. Thiazole orange is a cell semi-permeant, fluorescent cyanine dye, with low background noise, that binds several forms of nucleic acids. However, thiazole orange can exhibit cytotoxicity when used at high concentration and/or with prolonged exposure. Neomycin is a non-fluorescent antibiotic with affinity for several forms of nucleic acids, but does not readily enter mammalian cells. Conjugation of neomycin with thiazole orange can exploit the properties of each individual compound, yielding a small molecule that could be used for nontoxic application in cellular analysis by microscopic imaging. We demonstrate that conjugation of neomycin with thiazole orange increases the cell permeability of neomycin, decreases the cytotoxicity of thiazole orange, and exhibits a greater degree of intracellular RNA targeted localization in the nucleolus, when compared to thiazole orange. Relative to thiazole orange, the conjugated compounds showed a much higher degree of stabilization of the nucleic acids as reflected in a greater denaturation temperature. Ultimately, our studies indicate that the conjugated thiazole orange-neomycin compounds can be used as an RNA targeted, less cytotoxic alternative for cellular labeling.
期刊介绍:
ChemistryOpen is a multidisciplinary, gold-road open-access, international forum for the publication of outstanding Reviews, Full Papers, and Communications from all areas of chemistry and related fields. It is co-owned by 16 continental European Chemical Societies, who have banded together in the alliance called ChemPubSoc Europe for the purpose of publishing high-quality journals in the field of chemistry and its border disciplines. As some of the governments of the countries represented in ChemPubSoc Europe have strongly recommended that the research conducted with their funding is freely accessible for all readers (Open Access), ChemPubSoc Europe was concerned that no journal for which the ethical standards were monitored by a chemical society was available for such papers. ChemistryOpen fills this gap.