Association between serum hypertriglyceridemia and hematological indices: data mining approaches.

IF 3.3 3区 医学 Q2 MEDICAL INFORMATICS
Somayeh Ghiasi Hafezi, Amin Mansoori, Alireza Kooshki, Marzieh Hosseini, Sahar Ghoflchi, Mark Ghamsary, Gordon Ferns, Habibollah Esmaily, Majid Ghayour-Mobarhan
{"title":"Association between serum hypertriglyceridemia and hematological indices: data mining approaches.","authors":"Somayeh Ghiasi Hafezi, Amin Mansoori, Alireza Kooshki, Marzieh Hosseini, Sahar Ghoflchi, Mark Ghamsary, Gordon Ferns, Habibollah Esmaily, Majid Ghayour-Mobarhan","doi":"10.1186/s12911-024-02835-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>High triglyceride (TG) affects and is affected of other hematological factors. The determination of serum fasted triglycerides concentrations, as part of a lipid profile, is crucial key point in hematological factors and significantly affect various systemic diseases. This study was carried out to assess the potential relation between the concentration of TG and hematological factors.</p><p><strong>Method: </strong>Our sample size was 9704 participants beginning in 2007 and ending in 2020 aged between 35 and 65 years, sourced from the MASHAD cohort (northeastern Iran). Machine learning methodologies, specifically logistic regression, decision tree, and random forest algorithms, were utilized for data analysis in the investigation of individuals with normal and high TG levels.</p><p><strong>Results: </strong>The highest Gini score belongs to RLR (Red cell distribution width/Lymphocyte) (236.10), RPR (Red cell distribution width/Platelets) (215.78), and PHR (Platelets/high-density lipoprotein) (273.66). We also found that factors such as age are statistically associated with the level of TG in women probably due to the drop in menopausal estrogen. RF model showed to have higher accuracy in predicting the TG level in both males and females.</p><p><strong>Conclusion: </strong>Our model assessed the association between serum TG with several hematological factors like RLR, RPR, and PHR. Other hematological factors also have been reported to be related to the TG level. As these results give us new insights into the association of TG on various hematological factors and their possible interactions with each other. future studies are needed to provide sufficient data for the mechanism and the pathophysiology of the findings.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"24 1","pages":"410"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-024-02835-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: High triglyceride (TG) affects and is affected of other hematological factors. The determination of serum fasted triglycerides concentrations, as part of a lipid profile, is crucial key point in hematological factors and significantly affect various systemic diseases. This study was carried out to assess the potential relation between the concentration of TG and hematological factors.

Method: Our sample size was 9704 participants beginning in 2007 and ending in 2020 aged between 35 and 65 years, sourced from the MASHAD cohort (northeastern Iran). Machine learning methodologies, specifically logistic regression, decision tree, and random forest algorithms, were utilized for data analysis in the investigation of individuals with normal and high TG levels.

Results: The highest Gini score belongs to RLR (Red cell distribution width/Lymphocyte) (236.10), RPR (Red cell distribution width/Platelets) (215.78), and PHR (Platelets/high-density lipoprotein) (273.66). We also found that factors such as age are statistically associated with the level of TG in women probably due to the drop in menopausal estrogen. RF model showed to have higher accuracy in predicting the TG level in both males and females.

Conclusion: Our model assessed the association between serum TG with several hematological factors like RLR, RPR, and PHR. Other hematological factors also have been reported to be related to the TG level. As these results give us new insights into the association of TG on various hematological factors and their possible interactions with each other. future studies are needed to provide sufficient data for the mechanism and the pathophysiology of the findings.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
5.70%
发文量
297
审稿时长
1 months
期刊介绍: BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信