Topological functional network analysis of cortical blood flow in hyperacute ischemic rats.

IF 2.7 3区 医学 Q1 ANATOMY & MORPHOLOGY
Bochao Niu, Hongzhou Wu, Yilu Li, Benjamin Klugah-Brown, George Hanna, Youwang Yao, Junlin Jing, Talha Imtiaz Baig, Yang Xia, Dezhong Yao, Bharat Biswal
{"title":"Topological functional network analysis of cortical blood flow in hyperacute ischemic rats.","authors":"Bochao Niu, Hongzhou Wu, Yilu Li, Benjamin Klugah-Brown, George Hanna, Youwang Yao, Junlin Jing, Talha Imtiaz Baig, Yang Xia, Dezhong Yao, Bharat Biswal","doi":"10.1007/s00429-024-02864-7","DOIUrl":null,"url":null,"abstract":"<p><p>Acute cerebral ischemia alters brain network connectivity, leading to notable increases in both anatomical and functional connectivity while observing a reduction in metabolic connectivity. However, alterations of the cerebral blood flow (CBF) based functional connectivity remain unclear. We collected continuous CBF images using laser speckle contrast imaging (LSCI) technology to monitor ischemic occlusion-reperfusion progression through occlusion of the left carotid artery. We also used a dense cortical grid atlas to construct CBF-based functional connectivity networks for hyperacute ischemic rodents. Graph theoretical analysis was used to measure network topological characteristics and construct topological connection graphs. Coactivation pattern (CAP) analysis was utilized to examine the spatiotemporal characteristics of the global network. Additionally, we measured evoked functional hyperemia and correlated it with network topologies. Network analysis indicated a significant increase in functional connectivity, global efficiency, local efficiency, small-worldness, clustering coefficient, and regional degree centrality primarily within the left ischemic intra-hemisphere, accompanied by weaker changes in the right intra-hemisphere. Inter-hemisphere networks exhibited reduced homologous connections, global efficiency, and small-worldness. CAP analysis revealed increased strength of the left negative activation brain network's state fraction of time and transition probability from equilibrium-to-imbalance states. Left network metrics declined following blood flow reperfusion. Furthermore, positive/negative correlations between barrel-evoked intensity and regional network topologies were reversed as negative/positive correlations after cerebral ischemia. These findings suggest a damaged CBF functional network mechanism following acute cerebral ischemia and a disrupted association between resting state and evoked hyperemia.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":"230 1","pages":"20"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671571/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Structure & Function","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00429-024-02864-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Acute cerebral ischemia alters brain network connectivity, leading to notable increases in both anatomical and functional connectivity while observing a reduction in metabolic connectivity. However, alterations of the cerebral blood flow (CBF) based functional connectivity remain unclear. We collected continuous CBF images using laser speckle contrast imaging (LSCI) technology to monitor ischemic occlusion-reperfusion progression through occlusion of the left carotid artery. We also used a dense cortical grid atlas to construct CBF-based functional connectivity networks for hyperacute ischemic rodents. Graph theoretical analysis was used to measure network topological characteristics and construct topological connection graphs. Coactivation pattern (CAP) analysis was utilized to examine the spatiotemporal characteristics of the global network. Additionally, we measured evoked functional hyperemia and correlated it with network topologies. Network analysis indicated a significant increase in functional connectivity, global efficiency, local efficiency, small-worldness, clustering coefficient, and regional degree centrality primarily within the left ischemic intra-hemisphere, accompanied by weaker changes in the right intra-hemisphere. Inter-hemisphere networks exhibited reduced homologous connections, global efficiency, and small-worldness. CAP analysis revealed increased strength of the left negative activation brain network's state fraction of time and transition probability from equilibrium-to-imbalance states. Left network metrics declined following blood flow reperfusion. Furthermore, positive/negative correlations between barrel-evoked intensity and regional network topologies were reversed as negative/positive correlations after cerebral ischemia. These findings suggest a damaged CBF functional network mechanism following acute cerebral ischemia and a disrupted association between resting state and evoked hyperemia.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain Structure & Function
Brain Structure & Function 医学-解剖学与形态学
CiteScore
6.00
自引率
6.50%
发文量
168
审稿时长
8 months
期刊介绍: Brain Structure & Function publishes research that provides insight into brain structure−function relationships. Studies published here integrate data spanning from molecular, cellular, developmental, and systems architecture to the neuroanatomy of behavior and cognitive functions. Manuscripts with focus on the spinal cord or the peripheral nervous system are not accepted for publication. Manuscripts with focus on diseases, animal models of diseases, or disease-related mechanisms are only considered for publication, if the findings provide novel insight into the organization and mechanisms of normal brain structure and function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信