An Octopus-Inspired Soft Pneumatic Robotic Arm.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Emmanouil Papadakis, Dimitris P Tsakiris, Michael Sfakiotakis
{"title":"An Octopus-Inspired Soft Pneumatic Robotic Arm.","authors":"Emmanouil Papadakis, Dimitris P Tsakiris, Michael Sfakiotakis","doi":"10.3390/biomimetics9120773","DOIUrl":null,"url":null,"abstract":"<p><p>This paper addresses the design, development, control, and experimental evaluation of a soft robot arm whose actuation is inspired by the muscular structure of the octopus arm, one of the most agile biological manipulators. The robot arm is made of soft silicone and thus possesses enhanced compliance, which is beneficial in a variety of applications where the arm may come into contact with delicate features of its environment. The arm is composed of three elongated segments arranged in series, each one of which contains several pneumatically actuated chambers embedded in its silicone body, which may induce various types of deformations of the segment. By combining the segment deformations, and by imitating the antagonistic muscle group functionality of the octopus, the robot arm can bend in various directions, increase or decrease its length, as well as twist around its central axis. This is one of the few octopus-inspired soft robotic arms where twisting is replicated in its motion characteristics, thus greatly expanding the arm's potential applications. We present the design process and the development steps of the soft arm, where the molding of two-part silicone of low hardness in 3d-printed molds is employed. In addition, we present the control methodology and the experimental evaluation of both a standalone segment and the entire three-segment arm. This experimental evaluation involves model-free closed-loop control schemes, exploiting visual feedback from a pair of external cameras in order to reconstruct in real time the shape of the soft arm and the pose of its tip.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"9 12","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727030/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics9120773","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the design, development, control, and experimental evaluation of a soft robot arm whose actuation is inspired by the muscular structure of the octopus arm, one of the most agile biological manipulators. The robot arm is made of soft silicone and thus possesses enhanced compliance, which is beneficial in a variety of applications where the arm may come into contact with delicate features of its environment. The arm is composed of three elongated segments arranged in series, each one of which contains several pneumatically actuated chambers embedded in its silicone body, which may induce various types of deformations of the segment. By combining the segment deformations, and by imitating the antagonistic muscle group functionality of the octopus, the robot arm can bend in various directions, increase or decrease its length, as well as twist around its central axis. This is one of the few octopus-inspired soft robotic arms where twisting is replicated in its motion characteristics, thus greatly expanding the arm's potential applications. We present the design process and the development steps of the soft arm, where the molding of two-part silicone of low hardness in 3d-printed molds is employed. In addition, we present the control methodology and the experimental evaluation of both a standalone segment and the entire three-segment arm. This experimental evaluation involves model-free closed-loop control schemes, exploiting visual feedback from a pair of external cameras in order to reconstruct in real time the shape of the soft arm and the pose of its tip.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信