An Advanced Whale Optimization Algorithm for Grayscale Image Enhancement.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Yibo Han, Pei Hu, Zihan Su, Lu Liu, John Panneerselvam
{"title":"An Advanced Whale Optimization Algorithm for Grayscale Image Enhancement.","authors":"Yibo Han, Pei Hu, Zihan Su, Lu Liu, John Panneerselvam","doi":"10.3390/biomimetics9120760","DOIUrl":null,"url":null,"abstract":"<p><p>Image enhancement is an important step in image processing to improve contrast and information quality. Intelligent enhancement algorithms are gaining popularity due to the limitations of traditional methods. This paper utilizes a transformation function to enhance the global and local information of grayscale images, but the parameters of this function can produce significant changes in the processed images. To address this, the whale optimization algorithm (WOA) is employed for parameter optimization. New equations are incorporated into WOA to improve its global optimization capability, and exemplars and advanced spiral updates improve the convergence of the algorithm. Its performance is validated on four different types of images. The algorithm not only outperforms comparison algorithms in the objective function but also excels in other image enhancement metrics, including peak signal-to-noise ratio (PSNR), feature similarity index (FSIM), structural similarity index (SSIM), and patch-based contrast quality index (PCQI). It is superior to the comparison algorithms in 11, 6, 11, 13, and 7 images in these metrics, respectively. The results demonstrate that the algorithm is suitable for image enhancement both subjectively and statistically.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"9 12","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672908/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics9120760","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Image enhancement is an important step in image processing to improve contrast and information quality. Intelligent enhancement algorithms are gaining popularity due to the limitations of traditional methods. This paper utilizes a transformation function to enhance the global and local information of grayscale images, but the parameters of this function can produce significant changes in the processed images. To address this, the whale optimization algorithm (WOA) is employed for parameter optimization. New equations are incorporated into WOA to improve its global optimization capability, and exemplars and advanced spiral updates improve the convergence of the algorithm. Its performance is validated on four different types of images. The algorithm not only outperforms comparison algorithms in the objective function but also excels in other image enhancement metrics, including peak signal-to-noise ratio (PSNR), feature similarity index (FSIM), structural similarity index (SSIM), and patch-based contrast quality index (PCQI). It is superior to the comparison algorithms in 11, 6, 11, 13, and 7 images in these metrics, respectively. The results demonstrate that the algorithm is suitable for image enhancement both subjectively and statistically.

一种用于灰度图像增强的高级鲸鱼优化算法。
图像增强是图像处理中提高对比度和信息质量的重要步骤。由于传统方法的局限性,智能增强算法越来越受欢迎。本文利用变换函数增强灰度图像的全局和局部信息,但变换函数的参数会对处理后的图像产生较大的变化。为了解决这个问题,采用鲸鱼优化算法(WOA)进行参数优化。在WOA中引入新的方程,提高了算法的全局寻优能力,并通过实例和先进的螺旋更新提高了算法的收敛性。在四种不同类型的图像上验证了其性能。该算法不仅在目标函数上优于比较算法,而且在峰值信噪比(PSNR)、特征相似度指数(FSIM)、结构相似度指数(SSIM)和基于patch的对比度质量指数(PCQI)等其他图像增强指标上也表现优异。在这些指标中,它分别优于11、6、11、13和7个图像中的比较算法。结果表明,该算法在主观上和统计上都适用于图像增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信