Jittima Saengsuwan, Lars Brockmann, Corina Schuster-Amft, Kenneth J Hunt
{"title":"Changes in heart rate variability at rest and during exercise in patients after a stroke: a feasibility study.","authors":"Jittima Saengsuwan, Lars Brockmann, Corina Schuster-Amft, Kenneth J Hunt","doi":"10.1186/s12938-024-01328-7","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to evaluate the feasibility of using a biofeedback-enhanced robotics-assisted tilt table (RATT) to investigate time- and intensity-dependent changes in heart rate variability (HRV) at rest and during heart rate-controlled exercise in patients recovering from a stroke. Twelve patients (age 55.3 years ± 15.6 years, 7 women) completed two separate measurement sessions. The first involved familiarization and system identification to determine parameters of a feedback system for automatic control of heart rate (HR). The second comprised 14 min of rest and 21 min of active exercise during which HR was held constant using feedback control to eliminate cardiovascular drift. HR data were collected using a chest-belt HR sensor, and raw RR intervals were employed for HRV analysis during periods of rest (0-7 min and 7-14 min) and exercise (5-13 min and 13-21 min). A biofeedback-enhanced, robotics-assisted tilt table can be successfully employed to perform heart rate-controlled exercises in patients after a stroke. All HRV metrics were substantially lower during exercise compared to rest. In the rest period, HRV values during 0-7 min were lower than during 7-14 min, in line with a slight HR decrease over the entire rest period. During exercise, HRV values during 5-13 min were higher than during 13-21 min, suggesting a time-dependent HRV decrease. All HRV metrics exhibited intensity- and time-dependent changes: higher HRV at rest and decreasing HRV over time. Understanding these HRV characteristics will support the development of heart rate-controlled exercise regimens and protocols for examining HRV changes during exercise in patients.</p>","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":"23 1","pages":"132"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670367/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMedical Engineering OnLine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12938-024-01328-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this study was to evaluate the feasibility of using a biofeedback-enhanced robotics-assisted tilt table (RATT) to investigate time- and intensity-dependent changes in heart rate variability (HRV) at rest and during heart rate-controlled exercise in patients recovering from a stroke. Twelve patients (age 55.3 years ± 15.6 years, 7 women) completed two separate measurement sessions. The first involved familiarization and system identification to determine parameters of a feedback system for automatic control of heart rate (HR). The second comprised 14 min of rest and 21 min of active exercise during which HR was held constant using feedback control to eliminate cardiovascular drift. HR data were collected using a chest-belt HR sensor, and raw RR intervals were employed for HRV analysis during periods of rest (0-7 min and 7-14 min) and exercise (5-13 min and 13-21 min). A biofeedback-enhanced, robotics-assisted tilt table can be successfully employed to perform heart rate-controlled exercises in patients after a stroke. All HRV metrics were substantially lower during exercise compared to rest. In the rest period, HRV values during 0-7 min were lower than during 7-14 min, in line with a slight HR decrease over the entire rest period. During exercise, HRV values during 5-13 min were higher than during 13-21 min, suggesting a time-dependent HRV decrease. All HRV metrics exhibited intensity- and time-dependent changes: higher HRV at rest and decreasing HRV over time. Understanding these HRV characteristics will support the development of heart rate-controlled exercise regimens and protocols for examining HRV changes during exercise in patients.
期刊介绍:
BioMedical Engineering OnLine is an open access, peer-reviewed journal that is dedicated to publishing research in all areas of biomedical engineering.
BioMedical Engineering OnLine is aimed at readers and authors throughout the world, with an interest in using tools of the physical and data sciences and techniques in engineering to understand and solve problems in the biological and medical sciences. Topical areas include, but are not limited to:
Bioinformatics-
Bioinstrumentation-
Biomechanics-
Biomedical Devices & Instrumentation-
Biomedical Signal Processing-
Healthcare Information Systems-
Human Dynamics-
Neural Engineering-
Rehabilitation Engineering-
Biomaterials-
Biomedical Imaging & Image Processing-
BioMEMS and On-Chip Devices-
Bio-Micro/Nano Technologies-
Biomolecular Engineering-
Biosensors-
Cardiovascular Systems Engineering-
Cellular Engineering-
Clinical Engineering-
Computational Biology-
Drug Delivery Technologies-
Modeling Methodologies-
Nanomaterials and Nanotechnology in Biomedicine-
Respiratory Systems Engineering-
Robotics in Medicine-
Systems and Synthetic Biology-
Systems Biology-
Telemedicine/Smartphone Applications in Medicine-
Therapeutic Systems, Devices and Technologies-
Tissue Engineering