Biomimetic Linkage Mechanism Robust Control for Variable Stator Vanes in Aero-Engine.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Qinqin Sun, Zhangyang Lu, Xingyu Gui, Ye-Hwa Chen
{"title":"Biomimetic Linkage Mechanism Robust Control for Variable Stator Vanes in Aero-Engine.","authors":"Qinqin Sun, Zhangyang Lu, Xingyu Gui, Ye-Hwa Chen","doi":"10.3390/biomimetics9120778","DOIUrl":null,"url":null,"abstract":"<p><p>This work addresses the position tracking control design of the stator vane driven by electro-hydrostatic actuators facing uncertain aerodynamic disturbances. Rapidly changing aerodynamic conditions impose complex disturbance torques on the guide vanes. Consequently, a challenging task is to enhance control precision in complex uncertain environments. Inspired by the principles of mammalian muscle movement, a novel robust control strategy based on the backstepping method has been proposed. Using backstepping, virtual rotational speed and virtual pressure difference force are designed, which decompose the high-order position closed-loop control problem into three lower-order parts, eliminating the need for matching conditions. Subsequently, robust controllers were designed, and stability proofs and performance analyses of the controllers were provided. This control strategy was tested through numerical hydraulic simulation. The results show that compared to other control methods, this approach significantly improves tracking accuracy and robustness. Therefore, it is believed that this method has the potential to become a new generation solution for such problems.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"9 12","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727165/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics9120778","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This work addresses the position tracking control design of the stator vane driven by electro-hydrostatic actuators facing uncertain aerodynamic disturbances. Rapidly changing aerodynamic conditions impose complex disturbance torques on the guide vanes. Consequently, a challenging task is to enhance control precision in complex uncertain environments. Inspired by the principles of mammalian muscle movement, a novel robust control strategy based on the backstepping method has been proposed. Using backstepping, virtual rotational speed and virtual pressure difference force are designed, which decompose the high-order position closed-loop control problem into three lower-order parts, eliminating the need for matching conditions. Subsequently, robust controllers were designed, and stability proofs and performance analyses of the controllers were provided. This control strategy was tested through numerical hydraulic simulation. The results show that compared to other control methods, this approach significantly improves tracking accuracy and robustness. Therefore, it is believed that this method has the potential to become a new generation solution for such problems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信