Marjorie P de Ocampo, Bui Phuoc Tam, James A Egdane, Dmytro Chebotarov, Kazuyuki Doi, Akira Yamauchi, Abdelbagi M Ismail, Amelia Henry, Shiro Mitsuya
{"title":"Leaf Na+ effects and multi-trait GWAS point to salt exclusion as the key mechanism for reproductive stage salinity tolerance in rice.","authors":"Marjorie P de Ocampo, Bui Phuoc Tam, James A Egdane, Dmytro Chebotarov, Kazuyuki Doi, Akira Yamauchi, Abdelbagi M Ismail, Amelia Henry, Shiro Mitsuya","doi":"10.1093/aob/mcae227","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Since salinity stress may occur across stages of rice (Oryza sativa L.) crop growth, understanding the effects of salinity at reproductive stage is important although it has been much less studied than at seedling stage.</p><p><strong>Methods: </strong>In this study, lines from the Rice Diversity Panel 1 (RDP1) and the 3000 Rice Genomes (3KRG) were used to screen morphological and physiological traits, map loci controlling salinity tolerance through genome-wide association studies (GWAS), and identify favorable haplotypes associated with reproductive stage salinity tolerance.</p><p><strong>Key results: </strong>Salt exclusion was identified as the key tolerance mechanism in this study based on reduced panicle length as flag leaf Na+ increased, and a lack of effect of trimming the leaves in the salinity treatment on genotypic rankings. Since larger biomass showed a negative effect on the number of filled grains in multiple experiments, future studies should investigate the effect of whole-plant transpiration levels on salt uptake. In addition to genome-wide significant peaks identified in the single trait GWAS analyses, six loci showed colocations for multiple traits across experiments. Among these co-locating loci, three candidate loci that exhibited favorable haplotypes were also characterized to be involved in co-expression networks among which apoplast and cell wall functions had been annotated - further highlighting the role of salt exclusion.</p><p><strong>Conclusion: </strong>The loci identified here could be considered as potential sources for improving reproductive stage salinity tolerance in rice.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/aob/mcae227","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background and aims: Since salinity stress may occur across stages of rice (Oryza sativa L.) crop growth, understanding the effects of salinity at reproductive stage is important although it has been much less studied than at seedling stage.
Methods: In this study, lines from the Rice Diversity Panel 1 (RDP1) and the 3000 Rice Genomes (3KRG) were used to screen morphological and physiological traits, map loci controlling salinity tolerance through genome-wide association studies (GWAS), and identify favorable haplotypes associated with reproductive stage salinity tolerance.
Key results: Salt exclusion was identified as the key tolerance mechanism in this study based on reduced panicle length as flag leaf Na+ increased, and a lack of effect of trimming the leaves in the salinity treatment on genotypic rankings. Since larger biomass showed a negative effect on the number of filled grains in multiple experiments, future studies should investigate the effect of whole-plant transpiration levels on salt uptake. In addition to genome-wide significant peaks identified in the single trait GWAS analyses, six loci showed colocations for multiple traits across experiments. Among these co-locating loci, three candidate loci that exhibited favorable haplotypes were also characterized to be involved in co-expression networks among which apoplast and cell wall functions had been annotated - further highlighting the role of salt exclusion.
Conclusion: The loci identified here could be considered as potential sources for improving reproductive stage salinity tolerance in rice.
期刊介绍:
Annals of Botany is an international plant science journal publishing novel and rigorous research in all areas of plant science. It is published monthly in both electronic and printed forms with at least two extra issues each year that focus on a particular theme in plant biology. The Journal is managed by the Annals of Botany Company, a not-for-profit educational charity established to promote plant science worldwide.
The Journal publishes original research papers, invited and submitted review articles, ''Research in Context'' expanding on original work, ''Botanical Briefings'' as short overviews of important topics, and ''Viewpoints'' giving opinions. All papers in each issue are summarized briefly in Content Snapshots , there are topical news items in the Plant Cuttings section and Book Reviews . A rigorous review process ensures that readers are exposed to genuine and novel advances across a wide spectrum of botanical knowledge. All papers aim to advance knowledge and make a difference to our understanding of plant science.