{"title":"Characterization and bioinformatic analysis of a new chimeric endolysin against MRSA with great stability.","authors":"Sanaz Momen, Neda Soleimani, Farzaneh Azizmohseni, Yasaman Ahmadbeigi, Seddigheh Borhani, Zahra Amini-Bayat","doi":"10.1186/s13568-024-01812-2","DOIUrl":null,"url":null,"abstract":"<p><p>Antibiotics become less effective in treating infectious diseases as resistance increases. Staphylococcus aureus is a global problem due to its ability to form biofilms and resistance mechanisms. Phage endolysin is one of the most promising methods for combating antibiotic resistance. ZAM-MSC chimeric endolysin has three domains derived from SAL1 and lysostaphin, which target the peptide bridge of peptidoglycan. In this study purified ZAM-MSC (with yield of 30 mg/lit) had bactericidal activity against methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) at low concentrations (2.38 μg/ml and 1.88 μg/ml, respectively). The antibacterial spectrum revealed that ZAM-MSC was active against diverse Staphylococci. it has maintained 100% stability after 24 h incubation in pH 5 to 10 against S. aureus, as well as demonstrated significant thermostability and maintained nearly its full activity at different temperatures (4-42 °C) up to 1 day of incubation. The anti-biofilm activity of various concentrations of ZAM-MSC against MSSA and MRSA biofilms was not dose-dependent, and antibiofilm activity was observed even at low concentrations (14 μg/ml). Further, the molecular dynamics simulations demonstrated that the ZAM-MSC chimer and its parent proteins remained dynamically stable, showing similar flexibility despite the size and hydrogen bond number differences. In conclusion, the study reveals that chimeric ZAM-MSC is a distinctive enzyme with exceptional biochemical properties and rapid lytic activity against Staphylococci.</p>","PeriodicalId":7537,"journal":{"name":"AMB Express","volume":"14 1","pages":"143"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671461/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMB Express","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13568-024-01812-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Antibiotics become less effective in treating infectious diseases as resistance increases. Staphylococcus aureus is a global problem due to its ability to form biofilms and resistance mechanisms. Phage endolysin is one of the most promising methods for combating antibiotic resistance. ZAM-MSC chimeric endolysin has three domains derived from SAL1 and lysostaphin, which target the peptide bridge of peptidoglycan. In this study purified ZAM-MSC (with yield of 30 mg/lit) had bactericidal activity against methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) at low concentrations (2.38 μg/ml and 1.88 μg/ml, respectively). The antibacterial spectrum revealed that ZAM-MSC was active against diverse Staphylococci. it has maintained 100% stability after 24 h incubation in pH 5 to 10 against S. aureus, as well as demonstrated significant thermostability and maintained nearly its full activity at different temperatures (4-42 °C) up to 1 day of incubation. The anti-biofilm activity of various concentrations of ZAM-MSC against MSSA and MRSA biofilms was not dose-dependent, and antibiofilm activity was observed even at low concentrations (14 μg/ml). Further, the molecular dynamics simulations demonstrated that the ZAM-MSC chimer and its parent proteins remained dynamically stable, showing similar flexibility despite the size and hydrogen bond number differences. In conclusion, the study reveals that chimeric ZAM-MSC is a distinctive enzyme with exceptional biochemical properties and rapid lytic activity against Staphylococci.
期刊介绍:
AMB Express is a high quality journal that brings together research in the area of Applied and Industrial Microbiology with a particular interest in ''White Biotechnology'' and ''Red Biotechnology''. The emphasis is on processes employing microorganisms, eukaryotic cell cultures or enzymes for the biosynthesis, transformation and degradation of compounds. This includes fine and bulk chemicals, polymeric compounds and enzymes or other proteins. Downstream processes are also considered. Integrated processes combining biochemical and chemical processes are also published.