Corrosion Characteristics of Typical Gangue Minerals in Biometallurgical Systems.

IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jiafeng Li, Linlin Tong, Jianing Xu, Qiao Chen, Hongying Yang
{"title":"Corrosion Characteristics of Typical Gangue Minerals in Biometallurgical Systems.","authors":"Jiafeng Li, Linlin Tong, Jianing Xu, Qiao Chen, Hongying Yang","doi":"10.1007/s12010-024-05128-6","DOIUrl":null,"url":null,"abstract":"<p><p>Electrochemical and shake flask tests were used to examine the corrosion characteristics of typical gangue minerals in biometallurgical systems and their impact on microbial communities. The results show that the solubility order of the three gangue minerals is feldspar, mica, and quartz in descending order. Their corrosion processes are mainly controlled by cathodic electron-donating processes. They are subjected to triple resistance, which is defined as solution-resistant, colloidal silica passivation, and iron precipitation (ferric hydroxide or jarosite passivation). Fe<sup>3+</sup> and microorganisms both greatly improve the corrosion capacity of the system for the three gangue minerals. The community diversity may rise to 9.3, 8.6, and 4.4 times that of the initial HQ0211 strain, respectively, in the presence of feldspar, mica, and quartz.. The proportions of autotrophic microorganisms Leptospirillum, Sulfobacillus, and Acidiplasma decreased significantly, and the mixed trophic archaeon Ferroplasma and heterotrophic archaeon Cuniculiplasma became the dominant microorganisms in the system. Finally, the dissolution mechanism of gangue minerals in biometallurgical systems is discussed. The results enrich the theory of the gangue mineral corrosion process, which can lay a foundation for the effective regulation of biometallurgical processes.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-024-05128-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical and shake flask tests were used to examine the corrosion characteristics of typical gangue minerals in biometallurgical systems and their impact on microbial communities. The results show that the solubility order of the three gangue minerals is feldspar, mica, and quartz in descending order. Their corrosion processes are mainly controlled by cathodic electron-donating processes. They are subjected to triple resistance, which is defined as solution-resistant, colloidal silica passivation, and iron precipitation (ferric hydroxide or jarosite passivation). Fe3+ and microorganisms both greatly improve the corrosion capacity of the system for the three gangue minerals. The community diversity may rise to 9.3, 8.6, and 4.4 times that of the initial HQ0211 strain, respectively, in the presence of feldspar, mica, and quartz.. The proportions of autotrophic microorganisms Leptospirillum, Sulfobacillus, and Acidiplasma decreased significantly, and the mixed trophic archaeon Ferroplasma and heterotrophic archaeon Cuniculiplasma became the dominant microorganisms in the system. Finally, the dissolution mechanism of gangue minerals in biometallurgical systems is discussed. The results enrich the theory of the gangue mineral corrosion process, which can lay a foundation for the effective regulation of biometallurgical processes.

生物冶金系统中典型脉石矿物的腐蚀特性。
采用电化学和摇瓶试验研究了生物冶金系统中典型脉石矿物的腐蚀特性及其对微生物群落的影响。结果表明:3种脉石矿物溶解度依次为长石、云母、石英;它们的腐蚀过程主要受阴极给电子过程控制。它们经受三重抗溶性,即抗溶性、胶体二氧化硅钝化和铁沉淀(氢氧化铁或黄钾铁矾钝化)。Fe3+和微生物均显著提高了体系对三种脉石矿物的腐蚀能力。当长石、云母和石英存在时,群落多样性分别是初始菌株HQ0211的9.3倍、8.6倍和4.4倍。自养微生物Leptospirillum、Sulfobacillus和Acidiplasma的比例明显下降,混合营养古细菌Ferroplasma和异养古细菌cuuniculiplasma成为系统中的优势微生物。最后讨论了脉石矿物在生物冶金系统中的溶解机理。研究结果丰富了脉石矿物腐蚀过程理论,为生物冶金过程的有效调控奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Biochemistry and Biotechnology
Applied Biochemistry and Biotechnology 工程技术-生化与分子生物学
CiteScore
5.70
自引率
6.70%
发文量
460
审稿时长
5.3 months
期刊介绍: This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities. In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信