Julia V Bukanova, Rodion V Kondratenko, Elena I Solntseva
{"title":"Interaction Between Allopregnanolone and Amiloride Binding Sites on the GABA<sub>A</sub> Receptor.","authors":"Julia V Bukanova, Rodion V Kondratenko, Elena I Solntseva","doi":"10.1007/s12013-024-01654-6","DOIUrl":null,"url":null,"abstract":"<p><p>Allopregnanolone (Allo) is a positive allosteric modulator of the GABA<sub>A</sub> receptor, and amiloride (Ami) is a competitive antagonist of the GABA<sub>A</sub> receptor. The purpose of this work was to study the combined effect of Allo and Ami on functional activity of GABA<sub>A</sub> receptor. The GABA-induced chloride current (I<sub>GABA</sub>) was measured in isolated Purkinje cells of rat cerebellum using the patch-clamp technique and a system of fast application. Our results indicate that Allo suppresses the inhibitory effect of Ami on I<sub>GABA</sub>, the IC<sub>50</sub> value of Ami concentration-response curve was increased from 164 to 547 µM (P < 0.001) in the presence of Allo. Next, GABA concentration-response curves (EC<sub>50</sub> = 5.8 µM) were constructed in the presence of Allo (EC<sub>50</sub> = 1.2 µM), Ami (EC<sub>50</sub> = 25.5 µM), and the combination of Allo+Ami (EC<sub>50</sub> = 3.2 µM). Changes in EC<sub>50</sub> values as a percentage relative to the control were calculated. The blocking effect of Ami is reduced in the presence of Allo (340% vs 150%, P < 0.01) and the potentiating effect of Allo does not change in the presence of Ami (78% vs 87%, P > 0.05). The results suggest that there is an allosteric relationship between the Allo and Ami binding sites on GABA<sub>A</sub> receptor that operates in one direction, from Allo sites to Ami site, but not vice versa.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01654-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Allopregnanolone (Allo) is a positive allosteric modulator of the GABAA receptor, and amiloride (Ami) is a competitive antagonist of the GABAA receptor. The purpose of this work was to study the combined effect of Allo and Ami on functional activity of GABAA receptor. The GABA-induced chloride current (IGABA) was measured in isolated Purkinje cells of rat cerebellum using the patch-clamp technique and a system of fast application. Our results indicate that Allo suppresses the inhibitory effect of Ami on IGABA, the IC50 value of Ami concentration-response curve was increased from 164 to 547 µM (P < 0.001) in the presence of Allo. Next, GABA concentration-response curves (EC50 = 5.8 µM) were constructed in the presence of Allo (EC50 = 1.2 µM), Ami (EC50 = 25.5 µM), and the combination of Allo+Ami (EC50 = 3.2 µM). Changes in EC50 values as a percentage relative to the control were calculated. The blocking effect of Ami is reduced in the presence of Allo (340% vs 150%, P < 0.01) and the potentiating effect of Allo does not change in the presence of Ami (78% vs 87%, P > 0.05). The results suggest that there is an allosteric relationship between the Allo and Ami binding sites on GABAA receptor that operates in one direction, from Allo sites to Ami site, but not vice versa.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.