Ruifeng Zeng, Rui Zhou, Lu Zhen, Jinshuai Lan, Zhe Li, Donghao Gu, Wenlong Nie, Yi Shen, Minquan Zhang, Tong Zhang, Yue Ding
{"title":"Tumor-targeted nanosystem with hypoxia inducible factor 1α inhibition for synergistic chemo-photodynamic therapy against hypoxic tumor.","authors":"Ruifeng Zeng, Rui Zhou, Lu Zhen, Jinshuai Lan, Zhe Li, Donghao Gu, Wenlong Nie, Yi Shen, Minquan Zhang, Tong Zhang, Yue Ding","doi":"10.1016/j.colsurfb.2024.114456","DOIUrl":null,"url":null,"abstract":"<p><p>Photodynamic therapy (PDT) holds an essential role in the therapy of tumors. However, PDT consumes tissue oxygen and diminishes its own efficacy by inducing tumor hypoxia through the HIF-1α/VEGF pathway. Therefore, overcoming the photodynamic exacerbation of tumor hypoxia could reverse tumor microenvironment and enhance PDT. In this study, BC-PDA/HA loaded with bufalin (BUF) and chlorin e6 (Ce6) were developed for synergistic cancer chemo-photodynamic therapy. BC-PDA/HA, modified with hyaluronic acid (HA), exhibited CD44-targeting capability and enhanced cellular uptake in vitro. Moreover, in the acidic tumor microenvironment, BC-PDA/HA could on-demand release Ce6 and BUF, inducing PDT upon 660 nm irradiation. Simultaneously, the released BUF not only served as a chemotherapeutic agent, but also inhibited HIF-1α expression, reversing the PDT-induced tumor hypoxia. Furthermore, compared to free Ce6, BC-PDA/HA enhanced tumor accumulation and retention in vivo. BC-PDA/HA could also effectively improve hypoxia and inhibit tumor angiogenesis to enhance PDT efficacy, demonstrating synergistic chemo-PDT activity. In conclusion, this work provided a novel strategy for synergistic chemo-photodynamic therapy against breast cancer.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"248 ","pages":"114456"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.colsurfb.2024.114456","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Photodynamic therapy (PDT) holds an essential role in the therapy of tumors. However, PDT consumes tissue oxygen and diminishes its own efficacy by inducing tumor hypoxia through the HIF-1α/VEGF pathway. Therefore, overcoming the photodynamic exacerbation of tumor hypoxia could reverse tumor microenvironment and enhance PDT. In this study, BC-PDA/HA loaded with bufalin (BUF) and chlorin e6 (Ce6) were developed for synergistic cancer chemo-photodynamic therapy. BC-PDA/HA, modified with hyaluronic acid (HA), exhibited CD44-targeting capability and enhanced cellular uptake in vitro. Moreover, in the acidic tumor microenvironment, BC-PDA/HA could on-demand release Ce6 and BUF, inducing PDT upon 660 nm irradiation. Simultaneously, the released BUF not only served as a chemotherapeutic agent, but also inhibited HIF-1α expression, reversing the PDT-induced tumor hypoxia. Furthermore, compared to free Ce6, BC-PDA/HA enhanced tumor accumulation and retention in vivo. BC-PDA/HA could also effectively improve hypoxia and inhibit tumor angiogenesis to enhance PDT efficacy, demonstrating synergistic chemo-PDT activity. In conclusion, this work provided a novel strategy for synergistic chemo-photodynamic therapy against breast cancer.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.