In silico bioprospecting of receptors for Oligoventin: An antimicrobial peptide isolated from spider eggs of Phoneutria nigriventer.

IF 5.4 2区 医学 Q1 BIOPHYSICS
Elias Jorge Muniz Seif, Pedro Ismael Silva Junior
{"title":"In silico bioprospecting of receptors for Oligoventin: An antimicrobial peptide isolated from spider eggs of Phoneutria nigriventer.","authors":"Elias Jorge Muniz Seif, Pedro Ismael Silva Junior","doi":"10.1016/j.colsurfb.2024.114472","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Irresponsible and wholesale use of antimicrobial agents is the principal cause of the emergence of strains of resistant microorganisms to traditional drugs. Oligoventin is a neutral peptide isolated from spider eggs of Phoneutria nigriventer, with antimicrobial activity against Gram-positive, Gram-negative, and yeast organisms. However, the molecular target and pathways of antimicrobial activity are still unknown. Thus, the aim of the present study is to prospect receptors associated with the antimicrobial activity of Oligoventin using in silico tools.</p><p><strong>Methods: </strong>The PharmMapper and PDB server was used to prospect targets originating from microorganisms. Additionally, the PatchDock server was utilized to perform molecular docking between Oligoventin and the targets. Subsequently, the I-TASSER server was adopted to predict the ligand site. Finally, the docking results and predicted sites were compared with literature sites of each target.</p><p><strong>Results: </strong>Over 100 potential receptors for oligoventin have been identified. Among these, enoyl-ACP reductase (Id<sub>pdb</sub>1LXC) and thymidylate synthase ThyX (Id<sub>pdb</sub> 1O28) from bacteria and N-acetylglucosamine phosphate mutase (Id<sub>pdb</sub> 2DKD) showed superior interaction with oligoventin, exhibiting colocalization between docked residues and cofactor/active sites. These enzymes play a crucial role in fatty acid and DNA biosynthesis in prokaryotes and in cell wall synthesis in yeast.</p><p><strong>Conclusion: </strong>Therefore, in silico results suggest that Oligoventin can impair fatty acid DNA, cell wall synthesis, thereby reducing microbial proliferation and causing microorganism death.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"248 ","pages":"114472"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.colsurfb.2024.114472","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Irresponsible and wholesale use of antimicrobial agents is the principal cause of the emergence of strains of resistant microorganisms to traditional drugs. Oligoventin is a neutral peptide isolated from spider eggs of Phoneutria nigriventer, with antimicrobial activity against Gram-positive, Gram-negative, and yeast organisms. However, the molecular target and pathways of antimicrobial activity are still unknown. Thus, the aim of the present study is to prospect receptors associated with the antimicrobial activity of Oligoventin using in silico tools.

Methods: The PharmMapper and PDB server was used to prospect targets originating from microorganisms. Additionally, the PatchDock server was utilized to perform molecular docking between Oligoventin and the targets. Subsequently, the I-TASSER server was adopted to predict the ligand site. Finally, the docking results and predicted sites were compared with literature sites of each target.

Results: Over 100 potential receptors for oligoventin have been identified. Among these, enoyl-ACP reductase (Idpdb1LXC) and thymidylate synthase ThyX (Idpdb 1O28) from bacteria and N-acetylglucosamine phosphate mutase (Idpdb 2DKD) showed superior interaction with oligoventin, exhibiting colocalization between docked residues and cofactor/active sites. These enzymes play a crucial role in fatty acid and DNA biosynthesis in prokaryotes and in cell wall synthesis in yeast.

Conclusion: Therefore, in silico results suggest that Oligoventin can impair fatty acid DNA, cell wall synthesis, thereby reducing microbial proliferation and causing microorganism death.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Colloids and Surfaces B: Biointerfaces
Colloids and Surfaces B: Biointerfaces 生物-材料科学:生物材料
CiteScore
11.10
自引率
3.40%
发文量
730
审稿时长
42 days
期刊介绍: Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields. Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication. The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信