In situ production and precise release of bioactive GM-CSF and siRNA by engineered bacteria for macrophage reprogramming in cancer immunotherapy.

IF 12.8 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Yaxin Wang, Yali Fan, Xinyu Zhang, Jing Liu, Dawei Sun, Lianyue Li, Guijie Bai, Xinyu Liu, Jun Kang, Yingying Zhang, Hanjie Wang
{"title":"In situ production and precise release of bioactive GM-CSF and siRNA by engineered bacteria for macrophage reprogramming in cancer immunotherapy.","authors":"Yaxin Wang, Yali Fan, Xinyu Zhang, Jing Liu, Dawei Sun, Lianyue Li, Guijie Bai, Xinyu Liu, Jun Kang, Yingying Zhang, Hanjie Wang","doi":"10.1016/j.biomaterials.2024.123037","DOIUrl":null,"url":null,"abstract":"<p><p>In the immunosuppressive tumor microenvironment (TME), tumor-associated macrophages (TAMs) predominantly exhibit an immunosuppressive M2 phenotype, which facilitates tumor proliferation and metastasis. Although current strategies aimed at reprogramming TAMs hold promise, their sustainability and effectiveness are limited due to repeated injections. Herein, a bacterial therapy platform containing two engineered strains was developed. One strain was engineered to produce and secrete granulocyte-macrophage colony-stimulating factor (GM-CSF) to promote M2-like TAMs repolarization to M1-like TAMs, while the other strain was designed to secrete small interfering RNA (siRNA) targeting signal regulatory protein α (SIRPα). The two strains can continuously and efficiently produce bioactive therapeutic agents in situ, exerting a sustained and synergistic therapeutic effect in TAMs to inhibit tumor growth. To enhance treatment efficacy, optogenetic strategy was implemented to effectively control the production of GM-CSF, and outer membrane vesicles (OMVs) produced by engineered bacteria were utilized to protect the siRNA from degradation in the external environment. The experimental results indicated that the bacterial therapy platform could continuously produce and release bioactive GM-CSF and SIRPα siRNA, exhibiting significant therapeutic activity. In vivo experiments further demonstrated that this platform showed more sustained and stable therapeutic effects compared to conventional drug therapies. Additionally, the combination of these two engineered strains yielded the highest ratio of M1/M2 TAMs (0.80) and the lowest ratio of F4/80<sup>+</sup>SIRPα<sup>+</sup>TAMs (3.46 %) than single strain therapy. Our study expanded the potential of engineered bacteria as pharmaceutical factories for in vivo therapeutic applications.</p>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"317 ","pages":"123037"},"PeriodicalIF":12.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biomaterials.2024.123037","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the immunosuppressive tumor microenvironment (TME), tumor-associated macrophages (TAMs) predominantly exhibit an immunosuppressive M2 phenotype, which facilitates tumor proliferation and metastasis. Although current strategies aimed at reprogramming TAMs hold promise, their sustainability and effectiveness are limited due to repeated injections. Herein, a bacterial therapy platform containing two engineered strains was developed. One strain was engineered to produce and secrete granulocyte-macrophage colony-stimulating factor (GM-CSF) to promote M2-like TAMs repolarization to M1-like TAMs, while the other strain was designed to secrete small interfering RNA (siRNA) targeting signal regulatory protein α (SIRPα). The two strains can continuously and efficiently produce bioactive therapeutic agents in situ, exerting a sustained and synergistic therapeutic effect in TAMs to inhibit tumor growth. To enhance treatment efficacy, optogenetic strategy was implemented to effectively control the production of GM-CSF, and outer membrane vesicles (OMVs) produced by engineered bacteria were utilized to protect the siRNA from degradation in the external environment. The experimental results indicated that the bacterial therapy platform could continuously produce and release bioactive GM-CSF and SIRPα siRNA, exhibiting significant therapeutic activity. In vivo experiments further demonstrated that this platform showed more sustained and stable therapeutic effects compared to conventional drug therapies. Additionally, the combination of these two engineered strains yielded the highest ratio of M1/M2 TAMs (0.80) and the lowest ratio of F4/80+SIRPα+TAMs (3.46 %) than single strain therapy. Our study expanded the potential of engineered bacteria as pharmaceutical factories for in vivo therapeutic applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomaterials
Biomaterials 工程技术-材料科学:生物材料
CiteScore
26.00
自引率
2.90%
发文量
565
审稿时长
46 days
期刊介绍: Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信