Xiaojun Liu , Huihui Dong , Qinyu Wang , Jing Yang , Xinru Zhai , Mingzhen Lin , Kaixin Liu , Qinzheng Yang
{"title":"Efficient nitrate removal via microorganism-iron oxide co-evolution on biocathode surface","authors":"Xiaojun Liu , Huihui Dong , Qinyu Wang , Jing Yang , Xinru Zhai , Mingzhen Lin , Kaixin Liu , Qinzheng Yang","doi":"10.1016/j.bioelechem.2024.108889","DOIUrl":null,"url":null,"abstract":"<div><div>Sediment microbial fuel cell (SMFC) is a device for biological denitrification, in which electrons produced by sediment microorganisms can be transferred to the upper layer of the water column lacking electron donors. However, the low efficiency of denitrifying bacteria in acquiring electrons and enriching at the cathode greatly hinders the application of SMFC for nitrogen removal. In this study, we report a novel method of constructing a high-performance biocathode by modifying electrodes with zero-valent iron to enhance the enrichment and electron transfer of electroactive bacteria. The surface chemical and biological analysis of the biocathode revealed that the ZVI gradually oxidized to form magnetite and goethite, and finally stabilized into better crystallized lepidocrocite. On the other hand, the microbial community of the biocathode gradually evolved into a community dominated by denitrifying bacteria, specifically <em>Clostridium</em>. The co-evolved “<em>Clostridium</em>-lepidocrocite” composite endows the sediment microbial fuel cell with a 99% nitrate removal capacity. These results indicate that the cathode constructed by using ZVI modified electrode achieves efficient nitrate reduction by denitrifying bacteria. Furthermore, the construction method of biocathode may also have the potential application in water remediation and the geochemical cycling of elements.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"163 ","pages":"Article 108889"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539424002512","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sediment microbial fuel cell (SMFC) is a device for biological denitrification, in which electrons produced by sediment microorganisms can be transferred to the upper layer of the water column lacking electron donors. However, the low efficiency of denitrifying bacteria in acquiring electrons and enriching at the cathode greatly hinders the application of SMFC for nitrogen removal. In this study, we report a novel method of constructing a high-performance biocathode by modifying electrodes with zero-valent iron to enhance the enrichment and electron transfer of electroactive bacteria. The surface chemical and biological analysis of the biocathode revealed that the ZVI gradually oxidized to form magnetite and goethite, and finally stabilized into better crystallized lepidocrocite. On the other hand, the microbial community of the biocathode gradually evolved into a community dominated by denitrifying bacteria, specifically Clostridium. The co-evolved “Clostridium-lepidocrocite” composite endows the sediment microbial fuel cell with a 99% nitrate removal capacity. These results indicate that the cathode constructed by using ZVI modified electrode achieves efficient nitrate reduction by denitrifying bacteria. Furthermore, the construction method of biocathode may also have the potential application in water remediation and the geochemical cycling of elements.
期刊介绍:
An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry
Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of:
• Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction.
• Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms)
• Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes)
• Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion)
• Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair).
• Organization and use of arrays in-vitro and in-vivo, including as part of feedback control.
• Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.