An electrical characteristics extraction and analysis method for the membrane of medaka embryo during its development using electrical impedance spectroscopy.

IF 4.8 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Lu Yang, Yang Wu, Songpei Hu, Jiafeng Yao, Fangming Chen
{"title":"An electrical characteristics extraction and analysis method for the membrane of medaka embryo during its development using electrical impedance spectroscopy.","authors":"Lu Yang, Yang Wu, Songpei Hu, Jiafeng Yao, Fangming Chen","doi":"10.1016/j.bioelechem.2024.108885","DOIUrl":null,"url":null,"abstract":"<p><p>An electrical characteristics extraction and analysis method for membrane of medaka embryo during its development using Electrical Impedance Spectroscopy (EIS) is proposed. The proposed method is non-invasive, it doesn't affect the embryo's development. Embryo's equivalent electrical circuit (EEC) model is established to extract membrane's electrical characteristics, it is used to fit the embryo's electrical impedance curves in different developmental stages. The equivalent resistances and capacitances of membrane are regarded as the electrical characteristics to analyze the membrane's physiological changes during embryo's development. To achieve the embryo's electrical impedance curve from the measurement system exactly, an EIT-assisted electrical impedance curve extraction method is innovatively introduced. The extracted electrical characteristics of the membrane reflect its physiological changes well in both simulation and experiment. In experiment, the equivalent capacitances of embryo's membrane are increasing, while the equivalent resistances show a downward trend from neurula stage to hatching stage. The experiment results indicate that the permeability of membrane becomes higher and the thickness of membrane becomes thinner from neurula stage to hatching stage.</p>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"163 ","pages":"108885"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.bioelechem.2024.108885","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

An electrical characteristics extraction and analysis method for membrane of medaka embryo during its development using Electrical Impedance Spectroscopy (EIS) is proposed. The proposed method is non-invasive, it doesn't affect the embryo's development. Embryo's equivalent electrical circuit (EEC) model is established to extract membrane's electrical characteristics, it is used to fit the embryo's electrical impedance curves in different developmental stages. The equivalent resistances and capacitances of membrane are regarded as the electrical characteristics to analyze the membrane's physiological changes during embryo's development. To achieve the embryo's electrical impedance curve from the measurement system exactly, an EIT-assisted electrical impedance curve extraction method is innovatively introduced. The extracted electrical characteristics of the membrane reflect its physiological changes well in both simulation and experiment. In experiment, the equivalent capacitances of embryo's membrane are increasing, while the equivalent resistances show a downward trend from neurula stage to hatching stage. The experiment results indicate that the permeability of membrane becomes higher and the thickness of membrane becomes thinner from neurula stage to hatching stage.

建立了一种利用电阻抗谱法提取和分析藻胚发育过程中膜电特性的方法。
提出了一种利用电阻抗谱(EIS)提取和分析medaka胚胎发育过程中膜电特性的方法。该方法是非侵入性的,不影响胚胎的发育。建立胚胎等效电路(EEC)模型提取膜的电特性,用于拟合胚胎在不同发育阶段的电阻抗曲线。以膜的等效电阻和等效电容作为电特性,分析胚胎发育过程中膜的生理变化。为了准确地从测量系统中获得胚胎的电阻抗曲线,创新性地介绍了一种eit辅助的电阻抗曲线提取方法。提取的膜电特性在模拟和实验中都很好地反映了膜的生理变化。在实验中,胚膜的等效电容逐渐增大,而从神经胚期到孵化期,等效电阻呈下降趋势。实验结果表明,从神经胚期到孵化期,膜的通透性变高,膜的厚度变薄。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioelectrochemistry
Bioelectrochemistry 生物-电化学
CiteScore
9.10
自引率
6.00%
发文量
238
审稿时长
38 days
期刊介绍: An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of: • Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction. • Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms) • Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes) • Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion) • Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair). • Organization and use of arrays in-vitro and in-vivo, including as part of feedback control. • Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信