{"title":"The role of biodegradable plastics in lignite anaerobic digestion: Changes of organics transformation and metabolic pathway.","authors":"Shufeng Zhao, Hongyu Guo, Norbert Klitzsch, Xiao Liu, Guofu Li, Xiaokai Xu","doi":"10.1016/j.biortech.2024.132021","DOIUrl":null,"url":null,"abstract":"<p><p>Biodegradable plastics (BPs) and lignite, both rich in organic matter, present significant challenges for efficient conversion into clean energy. This study examined the anaerobic co-digestion of BPs and lignite under controlled laboratory conditions. The results demonstrated that the co-digestion of polylactic acid (PLA) and lignite (at a 1:2 mass ratio, with 5 g PLA and 10 g lignite as the model system) rapidly acclimated to the anaerobic environment, enhancing cumulative biogas production by 57 % compared to the mono-digestion of lignite alone. Synergistic fermentation significantly increased the production of organic small molecules while effectively degrading recalcitrant substances, including hydroxyl, aromatic, and methylene groups. Euryarchaeota emerged as the dominant phylum, with its abundance increasing by 118.4 %. Gene abundance for the carbon dioxide-to-methane conversion pathway increased by 60.1 %, confirming it as the primary methane metabolic pathway. These findings provide a novel method for the conversion and utilization of BPs and lignite.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"132021"},"PeriodicalIF":9.7000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2024.132021","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Biodegradable plastics (BPs) and lignite, both rich in organic matter, present significant challenges for efficient conversion into clean energy. This study examined the anaerobic co-digestion of BPs and lignite under controlled laboratory conditions. The results demonstrated that the co-digestion of polylactic acid (PLA) and lignite (at a 1:2 mass ratio, with 5 g PLA and 10 g lignite as the model system) rapidly acclimated to the anaerobic environment, enhancing cumulative biogas production by 57 % compared to the mono-digestion of lignite alone. Synergistic fermentation significantly increased the production of organic small molecules while effectively degrading recalcitrant substances, including hydroxyl, aromatic, and methylene groups. Euryarchaeota emerged as the dominant phylum, with its abundance increasing by 118.4 %. Gene abundance for the carbon dioxide-to-methane conversion pathway increased by 60.1 %, confirming it as the primary methane metabolic pathway. These findings provide a novel method for the conversion and utilization of BPs and lignite.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.