Evolution in Response to Management Increases Invasiveness Among Experimental Populations of Duckweed (Lemna minor).

IF 3.5 2区 生物学 Q1 EVOLUTIONARY BIOLOGY
Evolutionary Applications Pub Date : 2024-12-26 eCollection Date: 2024-12-01 DOI:10.1111/eva.70060
Taylor A Zallek, Martin M Turcotte
{"title":"Evolution in Response to Management Increases Invasiveness Among Experimental Populations of Duckweed (<i>Lemna minor</i>).","authors":"Taylor A Zallek, Martin M Turcotte","doi":"10.1111/eva.70060","DOIUrl":null,"url":null,"abstract":"<p><p>Numerous management methods are deployed to try to mitigate the destructive impact of weedy and invasive populations. Yet, such management practices may cause these populations to inadvertently evolve in ways that have consequence on their invasiveness. To test this idea, we conducted a two-step field mesocosm experiment; we evolved genetically diverse populations of the duckweed <i>Lemna minor</i> to targeted removal management and then tested the impact of that evolution in replicated invasions into experimental resident communities. We found that evolution in response to management increased invasiveness compared to populations evolved without management. This evolution in response to management had little effect on the impact of the invader on the resident species. These results illustrate the potential eco-evolutionary consequences of management practices. Mitigating evolution to physical removal, in addition to pesticides, may be important to the long-term success of integrated pest management.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 12","pages":"e70060"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671222/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/eva.70060","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Numerous management methods are deployed to try to mitigate the destructive impact of weedy and invasive populations. Yet, such management practices may cause these populations to inadvertently evolve in ways that have consequence on their invasiveness. To test this idea, we conducted a two-step field mesocosm experiment; we evolved genetically diverse populations of the duckweed Lemna minor to targeted removal management and then tested the impact of that evolution in replicated invasions into experimental resident communities. We found that evolution in response to management increased invasiveness compared to populations evolved without management. This evolution in response to management had little effect on the impact of the invader on the resident species. These results illustrate the potential eco-evolutionary consequences of management practices. Mitigating evolution to physical removal, in addition to pesticides, may be important to the long-term success of integrated pest management.

对管理反应的进化增加了浮萍实验种群的入侵性。
为了减轻杂草和入侵种群的破坏性影响,采取了许多管理方法。然而,这样的管理实践可能会导致这些种群在不经意间以对其入侵产生影响的方式进化。为了验证这个想法,我们进行了一个两步的现场中观实验;我们进化了具有遗传多样性的小浮萍种群,以进行有针对性的清除管理,然后测试了这种进化在重复入侵实验居民社区中的影响。我们发现,与没有管理的种群相比,有管理的种群进化增加了入侵性。这种响应管理的进化对入侵者对常驻物种的影响几乎没有影响。这些结果说明了管理实践的潜在生态进化后果。除农药外,减缓进化到物理清除可能对病虫害综合管理的长期成功很重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Evolutionary Applications
Evolutionary Applications 生物-进化生物学
CiteScore
8.50
自引率
7.30%
发文量
175
审稿时长
6 months
期刊介绍: Evolutionary Applications is a fully peer reviewed open access journal. It publishes papers that utilize concepts from evolutionary biology to address biological questions of health, social and economic relevance. Papers are expected to employ evolutionary concepts or methods to make contributions to areas such as (but not limited to): medicine, agriculture, forestry, exploitation and management (fisheries and wildlife), aquaculture, conservation biology, environmental sciences (including climate change and invasion biology), microbiology, and toxicology. All taxonomic groups are covered from microbes, fungi, plants and animals. In order to better serve the community, we also now strongly encourage submissions of papers making use of modern molecular and genetic methods (population and functional genomics, transcriptomics, proteomics, epigenetics, quantitative genetics, association and linkage mapping) to address important questions in any of these disciplines and in an applied evolutionary framework. Theoretical, empirical, synthesis or perspective papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信