Deoxyvasicinone hybrids in the management of Alzheimer's disease: Recent advances on manmade derivatives, pharmacological activities, and structure-activity relationship.

IF 4.3 3区 医学 Q2 CHEMISTRY, MEDICINAL
Ankur Gaur, Yash Pal Singh, Rajiv Sharma, Neeraj Bainsal
{"title":"Deoxyvasicinone hybrids in the management of Alzheimer's disease: Recent advances on manmade derivatives, pharmacological activities, and structure-activity relationship.","authors":"Ankur Gaur, Yash Pal Singh, Rajiv Sharma, Neeraj Bainsal","doi":"10.1002/ardp.202400742","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a prevalent neurological illness that affects over 80% of aged adults globally in cases of dementia. Although the exact pathophysiological causes of AD remain unclear, its pathogenesis is primarily driven by several distinct biochemical alterations: (i) the accumulation of toxic Aβ plaques, (ii) the hyperphosphorylation of tau proteins, (iii) oxidative stress resulting in cell death, and (iv) an imbalance between the two main neurotransmitters, glutamate and acetylcholine (ACh). Currently, there are very few medications available and no treatment. Presently marketed medications include memantine, an N-methyl-d-aspartate receptor (NMDA) antagonist, and acetylcholinesterase (AChE) inhibitors: rivastigmine, donepezil, and galantamine. Unfortunately, these medications are only useful in the initial stages of AD. The mentioned medications only provide symptomatic relief and do not slow down the disease progression in the advanced stages. Therefore, there is an urgent need to develop potential candidates to treat AD, symptomatically and therapeutically. Many research groups focus on natural products due to their diverse therapeutic profiles and easy availability. One such natural product is deoxyvasicinone, isolated from Adhatoda vasica. Given its broad pharmacological profile, various researchers have developed semisynthetic hybrids of deoxyvasicinone to address multifaceted diseases like AD. In this review article, we tried to summarize the semisynthetic hybrids of deoxyvasicinone developed over the past decade (2014-2024) for managing AD. We focus on their design, pharmacological activity, and structure-activity relationship (SAR) analysis. We hope this review enhances the reader's understanding of future exploratory options for deoxyvasicinone hybrids in AD management.</p>","PeriodicalId":128,"journal":{"name":"Archiv der Pharmazie","volume":"358 1","pages":"e2400742"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Pharmazie","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ardp.202400742","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease (AD) is a prevalent neurological illness that affects over 80% of aged adults globally in cases of dementia. Although the exact pathophysiological causes of AD remain unclear, its pathogenesis is primarily driven by several distinct biochemical alterations: (i) the accumulation of toxic Aβ plaques, (ii) the hyperphosphorylation of tau proteins, (iii) oxidative stress resulting in cell death, and (iv) an imbalance between the two main neurotransmitters, glutamate and acetylcholine (ACh). Currently, there are very few medications available and no treatment. Presently marketed medications include memantine, an N-methyl-d-aspartate receptor (NMDA) antagonist, and acetylcholinesterase (AChE) inhibitors: rivastigmine, donepezil, and galantamine. Unfortunately, these medications are only useful in the initial stages of AD. The mentioned medications only provide symptomatic relief and do not slow down the disease progression in the advanced stages. Therefore, there is an urgent need to develop potential candidates to treat AD, symptomatically and therapeutically. Many research groups focus on natural products due to their diverse therapeutic profiles and easy availability. One such natural product is deoxyvasicinone, isolated from Adhatoda vasica. Given its broad pharmacological profile, various researchers have developed semisynthetic hybrids of deoxyvasicinone to address multifaceted diseases like AD. In this review article, we tried to summarize the semisynthetic hybrids of deoxyvasicinone developed over the past decade (2014-2024) for managing AD. We focus on their design, pharmacological activity, and structure-activity relationship (SAR) analysis. We hope this review enhances the reader's understanding of future exploratory options for deoxyvasicinone hybrids in AD management.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Pharmazie
Archiv der Pharmazie 医学-化学综合
CiteScore
7.90
自引率
5.90%
发文量
176
审稿时长
3.0 months
期刊介绍: Archiv der Pharmazie - Chemistry in Life Sciences is an international journal devoted to research and development in all fields of pharmaceutical and medicinal chemistry. Emphasis is put on papers combining synthetic organic chemistry, structural biology, molecular modelling, bioorganic chemistry, natural products chemistry, biochemistry or analytical methods with pharmaceutical or medicinal aspects such as biological activity. The focus of this journal is put on original research papers, but other scientifically valuable contributions (e.g. reviews, minireviews, highlights, symposia contributions, discussions, and essays) are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信