Susanna Asseyer, Eleni Panagoulas, Jana Maidhof, Kersten Villringer, Esra Al, Xiuhui Chen, Thomas Krause, Samyogita Hardikar, Arno Villringer, Gerhard Jan Jungehülsing
{"title":"Prediction of Central Post-Stroke Pain by Quantitative Sensory Testing.","authors":"Susanna Asseyer, Eleni Panagoulas, Jana Maidhof, Kersten Villringer, Esra Al, Xiuhui Chen, Thomas Krause, Samyogita Hardikar, Arno Villringer, Gerhard Jan Jungehülsing","doi":"10.1002/ana.27138","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Among patients with acute stroke, we aimed to identify those who will later develop central post-stroke pain (CPSP) versus those who will not (non-pain sensory stroke [NPSS]) by assessing potential differences in somatosensory profile patterns and evaluating their potential as predictors of CPSP.</p><p><strong>Methods: </strong>In a prospective longitudinal study on 75 acute stroke patients with somatosensory symptoms, we performed quantitative somatosensory testing (QST) in the acute/subacute phase (within 10 days) and on follow-up visits for 12 months. Based on previous QST studies, we hypothesized that QST values of cold detection threshold (CDT) and dynamic mechanical allodynia (DMA) would differ between CPSP and NPSS patients before the onset of pain. Mann-Whitney U-tests and mixed analysis of variances with Bonferroni corrections were performed to compare z-normalized QST scores between both groups.</p><p><strong>Results: </strong>In total, 26 patients (34.7%) developed CPSP. In the acute phase, CPSP patients showed contralesional cold hypoesthesia compared to NPSS patients (p = 0.04), but no DMA differences. Additional exploratory analysis showed NPSS patients exhibit cold hyperalgesia on the contralesional side compared to the ipsilesional side, not seen in CPSP patients (p = 0.011). A gradient-boosting approach to predicting CPSP from QST patterns before pain onset had an overall accuracy of 84.6%, with a recall and precision of 75%. Notably, both in the acute and the chronic phase, approximately 80% of CPSP and NPSS patients showed bilateral QST abnormalities.</p><p><strong>Interpretation: </strong>Cold perception differences between CPSP and NPSS patients appear early post stroke before pain onset. Prediction of CPSP through QST patterns seems feasible. ANN NEUROL 2024.</p>","PeriodicalId":127,"journal":{"name":"Annals of Neurology","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ana.27138","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Among patients with acute stroke, we aimed to identify those who will later develop central post-stroke pain (CPSP) versus those who will not (non-pain sensory stroke [NPSS]) by assessing potential differences in somatosensory profile patterns and evaluating their potential as predictors of CPSP.
Methods: In a prospective longitudinal study on 75 acute stroke patients with somatosensory symptoms, we performed quantitative somatosensory testing (QST) in the acute/subacute phase (within 10 days) and on follow-up visits for 12 months. Based on previous QST studies, we hypothesized that QST values of cold detection threshold (CDT) and dynamic mechanical allodynia (DMA) would differ between CPSP and NPSS patients before the onset of pain. Mann-Whitney U-tests and mixed analysis of variances with Bonferroni corrections were performed to compare z-normalized QST scores between both groups.
Results: In total, 26 patients (34.7%) developed CPSP. In the acute phase, CPSP patients showed contralesional cold hypoesthesia compared to NPSS patients (p = 0.04), but no DMA differences. Additional exploratory analysis showed NPSS patients exhibit cold hyperalgesia on the contralesional side compared to the ipsilesional side, not seen in CPSP patients (p = 0.011). A gradient-boosting approach to predicting CPSP from QST patterns before pain onset had an overall accuracy of 84.6%, with a recall and precision of 75%. Notably, both in the acute and the chronic phase, approximately 80% of CPSP and NPSS patients showed bilateral QST abnormalities.
Interpretation: Cold perception differences between CPSP and NPSS patients appear early post stroke before pain onset. Prediction of CPSP through QST patterns seems feasible. ANN NEUROL 2024.
期刊介绍:
Annals of Neurology publishes original articles with potential for high impact in understanding the pathogenesis, clinical and laboratory features, diagnosis, treatment, outcomes and science underlying diseases of the human nervous system. Articles should ideally be of broad interest to the academic neurological community rather than solely to subspecialists in a particular field. Studies involving experimental model system, including those in cell and organ cultures and animals, of direct translational relevance to the understanding of neurological disease are also encouraged.