Mohammad Karami, Hamid Keshvari, Mohammad Amin Hajari, Mahshad Shiri, Fatemeh Movahedi, Siamak Rezaeiani, Sara Pahlavan, Leila Montazeri
{"title":"Functional and Structural Improvement of Engineered Cardiac Microtissue Using Aligned Microfilaments Scaffold.","authors":"Mohammad Karami, Hamid Keshvari, Mohammad Amin Hajari, Mahshad Shiri, Fatemeh Movahedi, Siamak Rezaeiani, Sara Pahlavan, Leila Montazeri","doi":"10.1021/acsbiomaterials.4c01714","DOIUrl":null,"url":null,"abstract":"<p><p>To enhance therapeutic strategies for cardiovascular diseases, the development of more reliable in vitro preclinical systems is imperative. These models, crucial for disease modeling and drug testing, must accurately replicate the 3D architecture of native heart tissue. In this study, we engineered a scaffold with aligned poly(lactic-<i>co</i>-glycolic acid) (PLGA) microfilaments to induce cellular alignment in the engineered cardiac microtissue (ECMT). Consequently, the coculture of three cell types, including cardiac progenitor cells (CPC), human umbilical cord endothelial cells (HUVEC), and human foreskin fibroblasts (HFF), within this 3D scaffold significantly improved cellular alignment compared to the control. Additionally, cells in the ECMT exhibited a more uniaxial anisotropic and oriented cytoskeleton, characterized by immunostaining of F-actin. This approach not only enhanced cell structure and microtissue architecture but also improved functionality, evident in synchronized electrophysiological signals. Therefore, our engineered cardiac microtissue using this aligned microfilament scaffold (AMFS) holds great potential for pharmaceutical research and other biomedical applications.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"531-542"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01714","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
To enhance therapeutic strategies for cardiovascular diseases, the development of more reliable in vitro preclinical systems is imperative. These models, crucial for disease modeling and drug testing, must accurately replicate the 3D architecture of native heart tissue. In this study, we engineered a scaffold with aligned poly(lactic-co-glycolic acid) (PLGA) microfilaments to induce cellular alignment in the engineered cardiac microtissue (ECMT). Consequently, the coculture of three cell types, including cardiac progenitor cells (CPC), human umbilical cord endothelial cells (HUVEC), and human foreskin fibroblasts (HFF), within this 3D scaffold significantly improved cellular alignment compared to the control. Additionally, cells in the ECMT exhibited a more uniaxial anisotropic and oriented cytoskeleton, characterized by immunostaining of F-actin. This approach not only enhanced cell structure and microtissue architecture but also improved functionality, evident in synchronized electrophysiological signals. Therefore, our engineered cardiac microtissue using this aligned microfilament scaffold (AMFS) holds great potential for pharmaceutical research and other biomedical applications.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture