Vinod Kumar Reddy Lekkala, Sunil Shrestha, Ayah Al Qaryoute, Sanchi Dhinoja, Prabha Acharya, Abida Raheem, Pudur Jagadeeswaran, Moo-Yeal Lee
{"title":"Enhanced Maturity and Functionality of Vascular Human Liver Organoids through 3D Bioprinting and Pillar Plate Culture.","authors":"Vinod Kumar Reddy Lekkala, Sunil Shrestha, Ayah Al Qaryoute, Sanchi Dhinoja, Prabha Acharya, Abida Raheem, Pudur Jagadeeswaran, Moo-Yeal Lee","doi":"10.1021/acsbiomaterials.4c01658","DOIUrl":null,"url":null,"abstract":"<p><p>Liver tissues, composed of hepatocytes, cholangiocytes, stellate cells, Kupffer cells, and sinusoidal endothelial cells, are differentiated from endodermal and mesodermal germ layers. By mimicking the developmental process of the liver, various differentiation protocols have been published to generate human liver organoids (HLOs) in vitro using induced pluripotent stem cells (iPSCs). However, HLOs derived solely from the endodermal germ layer often encounter technical hurdles such as insufficient maturity and functionality, limiting their utility for disease modeling and hepatotoxicity assays. To overcome this, we separately differentiated EpCAM<sup>+</sup> endodermal progenitor cells (EPCs) and mesoderm-derived vascular progenitor cells (VPCs) from the same human iPSC line. These cells were then mixed in a BME-2 matrix and concurrently differentiated into vascular human liver organoids (vHLOs). Remarkably, vHLOs exhibited a significantly higher maturity than vasculature-free HLOs, as demonstrated by increased coagulation factor secretion, albumin secretion, drug-metabolizing enzyme expression, and bile acid transportation. To enhance assay throughput and miniaturize vHLO culture, we 3D bioprinted expandable HLOs (eHLOs) in a BME-2 matrix on a pillar plate platform derived from EPCs and VPCs and compared them with HLOs derived from endoderm alone. Compared to HLOs cultured in a 50 μL BME-2 matrix dome in a 24-well plate, vHLOs cultured on the pillar plate exhibited superior maturity, likely due to enhanced nutrient and signaling molecule diffusion. The integration of physiologically relevant patterned liver organoids with the unique pillar plate platform enhanced the capabilities for high-throughput screening and disease modeling.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"506-517"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01658","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Liver tissues, composed of hepatocytes, cholangiocytes, stellate cells, Kupffer cells, and sinusoidal endothelial cells, are differentiated from endodermal and mesodermal germ layers. By mimicking the developmental process of the liver, various differentiation protocols have been published to generate human liver organoids (HLOs) in vitro using induced pluripotent stem cells (iPSCs). However, HLOs derived solely from the endodermal germ layer often encounter technical hurdles such as insufficient maturity and functionality, limiting their utility for disease modeling and hepatotoxicity assays. To overcome this, we separately differentiated EpCAM+ endodermal progenitor cells (EPCs) and mesoderm-derived vascular progenitor cells (VPCs) from the same human iPSC line. These cells were then mixed in a BME-2 matrix and concurrently differentiated into vascular human liver organoids (vHLOs). Remarkably, vHLOs exhibited a significantly higher maturity than vasculature-free HLOs, as demonstrated by increased coagulation factor secretion, albumin secretion, drug-metabolizing enzyme expression, and bile acid transportation. To enhance assay throughput and miniaturize vHLO culture, we 3D bioprinted expandable HLOs (eHLOs) in a BME-2 matrix on a pillar plate platform derived from EPCs and VPCs and compared them with HLOs derived from endoderm alone. Compared to HLOs cultured in a 50 μL BME-2 matrix dome in a 24-well plate, vHLOs cultured on the pillar plate exhibited superior maturity, likely due to enhanced nutrient and signaling molecule diffusion. The integration of physiologically relevant patterned liver organoids with the unique pillar plate platform enhanced the capabilities for high-throughput screening and disease modeling.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture