Application of Strontium Chloride Hexahydrate to Synthesize Strontium-Substituted Carbonate Apatite as a pH-Sensitive, Biologically Safe, and Highly Efficient siRNA Nanocarrier.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Fatema Tuz Zohora, Rajadurai Pathmanathan, Ezharul Hoque Chowdhury
{"title":"Application of Strontium Chloride Hexahydrate to Synthesize Strontium-Substituted Carbonate Apatite as a pH-Sensitive, Biologically Safe, and Highly Efficient siRNA Nanocarrier.","authors":"Fatema Tuz Zohora, Rajadurai Pathmanathan, Ezharul Hoque Chowdhury","doi":"10.1021/acsabm.4c01319","DOIUrl":null,"url":null,"abstract":"<p><p>Naked siRNAs are sensitive to enzymatic degradation, phagocytic entrapment, quick renal excretion, membrane impermeability, endosomal escape, and off-target effects. Designing a safe and efficient nanocarrier for siRNA delivery to the target site without toxicity remains a significant hurdle in gene therapy. CA is a unique derivative of hydroxyapatite and a highly pH-sensitive nanocarrier with strong particle aggregation and a high polydispersity index. Strontium (Sr<sup>2+</sup>), a group two divalent metal in the periodic table, has been reported for substituting calcium (Ca<sup>2+</sup>) ions from the apatite lattice and limiting particle growth/aggregation. This study used strontium chloride hexahydrate (SrCl<sub>2</sub>·6H<sub>2</sub>O) salt to develop a Sr-substituted CA (Sr-CA) nanocarrier with ∼30 nm size, spherical shape, less aggregation, homodispersity, and a fair anionic charge. Sr-CA demonstrated a large surface area-to-volume ratio, an improved cargo loading efficiency, and enhanced cellular uptake in HEK-293 cells. Moreover, Sr-CA is a pH-responsive nanocarrier responsible for its long physiological stability, efficient endosomal escape, and optimal cargo delivery within cells. These NPs have differential effects on MAPK1, MAP2K4, PIK3Ca, CAMK4, and p53 gene expression in HEK-293 cells without showing any significant cytotoxicity in cell growth properties. Gene silencing by Sr-CA-mediated siRNA delivery against MAPK1, MAP2K4, PIK3Ca, and CAMK4 genes significantly decreased the level of target gene expression and cell survival, demonstrating successful intracellular siRNA delivery in HEK-293 cells. Additionally, biocompatibility testing confirmed the biological safety of the Sr-CA nanocarrier in mice. These findings suggest that Sr-CA nanocarriers are a promising siRNA delivery system, combining high efficiency with pH-sensitive release and excellent biocompatibility, making them a viable option for future therapeutic applications.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Naked siRNAs are sensitive to enzymatic degradation, phagocytic entrapment, quick renal excretion, membrane impermeability, endosomal escape, and off-target effects. Designing a safe and efficient nanocarrier for siRNA delivery to the target site without toxicity remains a significant hurdle in gene therapy. CA is a unique derivative of hydroxyapatite and a highly pH-sensitive nanocarrier with strong particle aggregation and a high polydispersity index. Strontium (Sr2+), a group two divalent metal in the periodic table, has been reported for substituting calcium (Ca2+) ions from the apatite lattice and limiting particle growth/aggregation. This study used strontium chloride hexahydrate (SrCl2·6H2O) salt to develop a Sr-substituted CA (Sr-CA) nanocarrier with ∼30 nm size, spherical shape, less aggregation, homodispersity, and a fair anionic charge. Sr-CA demonstrated a large surface area-to-volume ratio, an improved cargo loading efficiency, and enhanced cellular uptake in HEK-293 cells. Moreover, Sr-CA is a pH-responsive nanocarrier responsible for its long physiological stability, efficient endosomal escape, and optimal cargo delivery within cells. These NPs have differential effects on MAPK1, MAP2K4, PIK3Ca, CAMK4, and p53 gene expression in HEK-293 cells without showing any significant cytotoxicity in cell growth properties. Gene silencing by Sr-CA-mediated siRNA delivery against MAPK1, MAP2K4, PIK3Ca, and CAMK4 genes significantly decreased the level of target gene expression and cell survival, demonstrating successful intracellular siRNA delivery in HEK-293 cells. Additionally, biocompatibility testing confirmed the biological safety of the Sr-CA nanocarrier in mice. These findings suggest that Sr-CA nanocarriers are a promising siRNA delivery system, combining high efficiency with pH-sensitive release and excellent biocompatibility, making them a viable option for future therapeutic applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信