Predicting Composition Evolution for a Sulfuric Acid-Dimethylamine System from Monomer to Nanoparticle Using Machine Learning.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry A Pub Date : 2025-01-09 Epub Date: 2024-12-25 DOI:10.1021/acs.jpca.4c06062
Yi-Rong Liu, Yan Jiang
{"title":"Predicting Composition Evolution for a Sulfuric Acid-Dimethylamine System from Monomer to Nanoparticle Using Machine Learning.","authors":"Yi-Rong Liu, Yan Jiang","doi":"10.1021/acs.jpca.4c06062","DOIUrl":null,"url":null,"abstract":"<p><p>Experimental and theoretical studies on the compositional changes of new particle formation in the nucleation and initial growth stages of acid-base systems (2 and 5 nm) are extremely challenging. This study proposes a machine learning method for predicting the composition change of the sulfuric acid-dimethylamine system in the transformation from monomer to nanoparticle by learning the structure and composition information on small-sized sulfuric acid (SA)-dimethylamine (DMA) molecular clusters. Based on this method and changes in components, we found that the sulfuric acid-dimethylamine growth was mainly through the alternate adsorption of (SA)<sub>1</sub>(DMA)<sub>1</sub>, (SA)<sub>1</sub>(DMA)<sub>2</sub>, and (SA)<sub>1</sub> clusters at the early stage of nucleation, which accounted for about 70, 20, and 10%, respectively. This can explain the nature of possible changes in cluster acidity during the initial nucleation stage for the sulfuric acid-dimethylamine system. This method can also predict the base-stabilization mechanism of the sulfuric acid-dimethylamine system without relying on any experimental data, thereby yielding results that are consistent with those of previous experimental measurement.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"222-231"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c06062","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Experimental and theoretical studies on the compositional changes of new particle formation in the nucleation and initial growth stages of acid-base systems (2 and 5 nm) are extremely challenging. This study proposes a machine learning method for predicting the composition change of the sulfuric acid-dimethylamine system in the transformation from monomer to nanoparticle by learning the structure and composition information on small-sized sulfuric acid (SA)-dimethylamine (DMA) molecular clusters. Based on this method and changes in components, we found that the sulfuric acid-dimethylamine growth was mainly through the alternate adsorption of (SA)1(DMA)1, (SA)1(DMA)2, and (SA)1 clusters at the early stage of nucleation, which accounted for about 70, 20, and 10%, respectively. This can explain the nature of possible changes in cluster acidity during the initial nucleation stage for the sulfuric acid-dimethylamine system. This method can also predict the base-stabilization mechanism of the sulfuric acid-dimethylamine system without relying on any experimental data, thereby yielding results that are consistent with those of previous experimental measurement.

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信