Direct Observation of Hybridization Between Co 3d and S 2p Electronic Orbits: Moderating Sulfur Covalency to Pre-Activate Sulfur-Redox in Lithium-Sulfur Batteries.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Di Wang, Yaozu Jia, Qi Jin, Fengying Tian, Qiong Gao, Xu Xu, Huiqing Lu, Lili Wu, Xinzhi Ma, Xitian Zhang
{"title":"Direct Observation of Hybridization Between Co 3d and S 2p Electronic Orbits: Moderating Sulfur Covalency to Pre-Activate Sulfur-Redox in Lithium-Sulfur Batteries.","authors":"Di Wang, Yaozu Jia, Qi Jin, Fengying Tian, Qiong Gao, Xu Xu, Huiqing Lu, Lili Wu, Xinzhi Ma, Xitian Zhang","doi":"10.1002/advs.202412038","DOIUrl":null,"url":null,"abstract":"<p><p>Lithium-sulfur batteries (LSBs) offer high energy density and environmental benefits hampered by the shuttle effect related to sluggish redox reactions of long-chain lithium polysulfides (LiPSs). However, the fashion modification of the d-band center in separators is still ineffective, wherein the mechanism understanding always relies on theoretical calculations. This study visibly probed the evolution of the Co 3d-band center during charge and discharge using advanced inverse photoemission spectroscopy/ultraviolet photoemission spectroscopy (IPES/UPS), which offers reliable evidence and are consistent well with theoretical calculations. This, coupled with in situ Raman and X-ray diffraction (XRD) and electrochemical data, co-evidences a novel pre-activating S redox mechanism in LSBs: LiPSs desert/insert in C-N matrixes within a series of Co@NCNT-based separators. The insight of the S redox pre-activation is discovered that the Co 3d-band center downshifts to hybridized with S 2p orbitals in LiPSs, giving rise to a more pronounced S covalency and thus accelerating the conversion of LiPSs to S₈. Benefiting from these advantages, the optimized LSB possesses a minimal decay rate of 0.0058% after 200 cycles at a high discharge rate of 10 C. This study provides new insights into LSB mechanisms and supports conventional theoretical models of the d-band center's impact on LSB performance.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2412038"},"PeriodicalIF":14.3000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202412038","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-sulfur batteries (LSBs) offer high energy density and environmental benefits hampered by the shuttle effect related to sluggish redox reactions of long-chain lithium polysulfides (LiPSs). However, the fashion modification of the d-band center in separators is still ineffective, wherein the mechanism understanding always relies on theoretical calculations. This study visibly probed the evolution of the Co 3d-band center during charge and discharge using advanced inverse photoemission spectroscopy/ultraviolet photoemission spectroscopy (IPES/UPS), which offers reliable evidence and are consistent well with theoretical calculations. This, coupled with in situ Raman and X-ray diffraction (XRD) and electrochemical data, co-evidences a novel pre-activating S redox mechanism in LSBs: LiPSs desert/insert in C-N matrixes within a series of Co@NCNT-based separators. The insight of the S redox pre-activation is discovered that the Co 3d-band center downshifts to hybridized with S 2p orbitals in LiPSs, giving rise to a more pronounced S covalency and thus accelerating the conversion of LiPSs to S₈. Benefiting from these advantages, the optimized LSB possesses a minimal decay rate of 0.0058% after 200 cycles at a high discharge rate of 10 C. This study provides new insights into LSB mechanisms and supports conventional theoretical models of the d-band center's impact on LSB performance.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信