{"title":"Highly stretchable radar absorber based on kirigami metastructures with tunable electromagnetic properties","authors":"Weimin Ding \n (, ), Zhong Zhang \n (, ), Shengyu Duan \n (, ), Zeang Zhao \n (, ), Hongshuai Lei \n (, )","doi":"10.1007/s10409-024-24363-x","DOIUrl":null,"url":null,"abstract":"<div><p>The demand for lightweight and multifunctional surface structure in high-end equipment is steadily growing. The harmonization between flexibility and electromagnetic tunability has become a significant subject for stealth morphing aircraft. This paper presents a microwave absorbing structure based on the kirigami configuration, aiming at improving the conformality with the negative Poisson’s ratio characteristic and expanding the radar stealth range with tunability. A precise electromagnetic reflectivity model of the impedance surface was established by the inversion method, and an integrated optimization algorithm was employed to optimize the structural parameters based on numerical analysis. Specimens composed of thermoplastic polyurethane elastic colloids and resistive materials were prepared to assess the in-plane mechanical tensile and electromagnetic absorption performances through experimental methods. The results indicate that the original absorption band spans 6.2–11.1 GHz, shifts to 8–18 GHz with stretching at a panel rotation angle of 16°, and remains nearly constant for further stretching. The specimens adhere to complex curved surfaces well in experiments and maintain the electromagnetic absorption performance compared with flat surfaces. This research offers a valuable reference for designing electromagnetic stealth structures that are highly stretchable and adjustable.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 9","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-024-24363-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The demand for lightweight and multifunctional surface structure in high-end equipment is steadily growing. The harmonization between flexibility and electromagnetic tunability has become a significant subject for stealth morphing aircraft. This paper presents a microwave absorbing structure based on the kirigami configuration, aiming at improving the conformality with the negative Poisson’s ratio characteristic and expanding the radar stealth range with tunability. A precise electromagnetic reflectivity model of the impedance surface was established by the inversion method, and an integrated optimization algorithm was employed to optimize the structural parameters based on numerical analysis. Specimens composed of thermoplastic polyurethane elastic colloids and resistive materials were prepared to assess the in-plane mechanical tensile and electromagnetic absorption performances through experimental methods. The results indicate that the original absorption band spans 6.2–11.1 GHz, shifts to 8–18 GHz with stretching at a panel rotation angle of 16°, and remains nearly constant for further stretching. The specimens adhere to complex curved surfaces well in experiments and maintain the electromagnetic absorption performance compared with flat surfaces. This research offers a valuable reference for designing electromagnetic stealth structures that are highly stretchable and adjustable.
期刊介绍:
Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences.
Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences.
In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest.
Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics